• Title/Summary/Keyword: Pulse jamming

Search Result 25, Processing Time 0.023 seconds

IRCM Jamming Effect Analysis of a Stationary Reticle Seeker (고정 레티클 탐색기의 IRCM 재밍효과 분석)

  • Ahn, Sang-Ho;Kim, Young-Choon;Lee, Kwang-Sei;Kim, Ki-Hong;Kim, Sung-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.304-312
    • /
    • 2010
  • The function of IRCM(Infrared Countermeasures) jamming is to cause the missile to miss its intended target by disturbing the seeker tracking process. This paper analyzes the jamming effect of IRCM jamming for a stationary reticle seeker. The phase error containing the azimuth angle information of target is analyzed for the intensity, frequency and duty ratio variation of the jammer pulse signal. We confirmed that the more the jammer frequency is similar to the spinning frequency of the stationary seeker, the more jamming effect is high.

Laser-based Jamming of a Pulse Modulated Infrared Seeker (레이저빔을 이용한 펄스변조 적외선탐색기 기만)

  • Kim, Sungjae;Jeong, Chunsik;Shin, Yongsan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.179-188
    • /
    • 2019
  • Laser beam is directional and small in divergence angle so that it is well qualified to deliver high intensity infrared energy into a coming MANPADS threat for aircraft survivability. The threat will be deceived and loose tracking of a target when it is exposed to the laser beam modulated relevant to the track mechanism of the threat. The laser beam goes through scattering inside the seeker of the threat and reach the detector in a stray light form, which is a critical phenomenon enabling jamming of the seeker. The mechanism of the laser beam based jamming against a pulse modulated infrared seeker is shown. Simulations are carried out to support the understanding of how the jam technique works.

A Study on the Radar Jamming Signal Simulator Design for the Test & Evaluation (시험평가용 레이다 재밍신호 시뮬레이터 설계 연구)

  • 최성린;이상훈;정회인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.2B
    • /
    • pp.160-169
    • /
    • 2002
  • While radar operator recognizes and tracks threat targets through the scope, it is essential to overcome the jamming signal that disturbs the normal operation of the radar. Therefore, to train operator and test the EW capability of the radar, this paper proposed the jamming signal simulation algorithm and design results to generate the deception jamming(range, velocity, angle deception and multiple false targets) and noise jamming signals(spot, barrage, swept spot and cover pulse noise). And also, the radar jamming signal simulator composed of the 6 constituents is developed on basis of the proposed algorithm and digital circuit design technique and confirmed the validity of the developed simulator by means of the test results to generate the various jamming signal.

Anti-Jamming and Time Delay Performance Analysis of Future SATURN Upgraded Military Aerial Communication Tactical Systems

  • Yang, Taeho;Lee, Kwangyull;Han, Chulhee;An, Kyeongsoo;Jang, Indong;Ahn, Seungbeom
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3029-3042
    • /
    • 2022
  • For over half a century, the United States (US) and its coalition military aircrafts have been using Ultra High Frequency (UHF) band analog modulation (AM) radios in ground-to-air communication and short-range air-to-air communications. Evolving from this, since 2007, the US military and the North Atlantic Treaty Organization (NATO) adopted HAVE QUICK to be used by almost all aircrafts, because it had been revealed that intercepting and jamming of former aircraft communication signals was possible, which placed a serious threat to defense systems. The second-generation Anti-jam Tactical UHF Radio for NATO (SATURN) was developed to replace HAVE QUICK systems by 2023. The NATO Standardization Agreement (STANAG) 4372 is a classified document that defines the SATURN technical and operational specifications. In preparation of this future upgrade to SATURN systems, in this paper, the SATURN technical and operational specifications are reviewed, and the network synchronization, frequency hopping, and communication setup parameters that are controlled by the Network (NET) Time, Time Of Day (TOD), Word Of Day (WOD), and Multiple Word of Day (MWOD) are described in addition to SATURN Edition 3 (ED3) and future Edition 4 (ED4) basic features. In addition, an anti-jamming performance analysis (in reference to partial band jamming and pulse jamming) and the time delay queueing model analysis are conducted based on a SATURN transmitter and receiver assumed model.

Implementation of VGPO/VGPI Velocity Deception Jamming Technique using Phase Sampled DRFM (위상 샘플방식 DRFM을 이용한 VGPO/VGPI 속도기만 재밍기법 구현)

  • Kim, Yo-Han;Moon, Byung-Jin;Hong, Sang-Guen;Sung, Ki-Min;Jeon, Young-Il;Na, In-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.955-961
    • /
    • 2021
  • In modern warfare, the importance of electronic warfare, which carries out a mission that using radio wave to find out enemy information or to protect ally information, has increased. Radar jamming technique is one of the most representative techniques of EA(Electronic Attack), it disturbs and deceives enemy radar system in order to secure ally location information. Velocity deception jamming technique, which is one of the radar jamming techniques, generally operate against pulse-doppler radar which use doppler effect in order to track target's velocity and location. Velocity Deception Jamming Technique can be implemented using DRFM(Digital Radio Frequency Memory) that performs Frequency Modulation. In this paper, I describe implementation method of VGPO/VGPI(Velocity Gate Pull-Off/Pull-In) velocity deception jamming technique using phase-sampled DRFM, and verify the operation of VGPO/VGPI velocity deception jamming technique with board test under signal injection condition.

Median Prefilter Based Robust Acquisition Of Direct Sequence Spread Spectrum Signals In Wideband Pulse Jamming (미디언 필터를 이용한 광대역 펄스 재밍 환경에서의 직접 시퀀스 확산 대역 신호의 강인한 포착)

  • 김승준;이용환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.6B
    • /
    • pp.1015-1023
    • /
    • 1999
  • We propose nonlinear processing schemes for robust acquisition of direct-sequence spread spectrum (DS/SS) signals in wideband pulse jamming. To mitigate the interference effect due to impulse-like wideband jamming signals, the received signal is preprocessed by using the median filter, a simple order statistic filter Since only parts of the PN sequence are used for rapid acquisition, it is indispensable for analytic design of an acquisition scheme to have an appropriate model of the partial PN signal. The partial correlation of the median filtered PN signal is approximated by a two-piecewise linear model using an approximate upper bound. The acquisition performance of the proposed schemes is compared to that of other schemes. Finally, the analytic design is verified by computer simulation.

  • PDF

Development of VGPO/I Jamming Technique for Phase Sampled DRFM (위상 샘플방식 DRFM에 적용 가능한 VGPO/I 재밍기법 기술 구현)

  • Choi, Young-Ik;Hong, Sang-Guen;Lee, Wang-Yong;Park, Jin-tae;Lee, Chang-hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1105-1111
    • /
    • 2016
  • In modern warfare, various target tracking radars are used for target location tracking. So, the importance of EA radar jamming technique which disrupt enemy target tracking radar in oder to neutralize tararget location tracking has increased. VGPO/I jamming is a base technique of EA(Electronic Attack), it is possible to operate to pulse-Doppler radar. In this papar, we develop VGPO/I jamming technique that can apply to phase sampled DRFM by using phase information and verifiy through simulations.

A Method Eliminating the Interference Signal for the Test of the Radar Electronic Protection Performance (레이더 전자보호 성능시험을 위한 송.수신 간섭신호 제거 기법)

  • Jung, Hoi-In;Lee, Sung-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.569-576
    • /
    • 2010
  • Jamming simulator has developed for the purpose of the test and evaluation on the electronic protection capabilities of the tracking radar onboard ship. This simulator has the capabilities to generate and radiate the jamming signals against the radar as well as those to receive, analyze and identify the radar signals at a real sea environment. The limited space of ship superstructure has led to the serious distortion caused by the ring around phenomenon that some sidelobes of the jamming beams were coming back to the receiving antenna. In this paper, we have proposed the methods to eliminate the ring around. First, we have inserted the groove metal screen between transmitting and receiving antennas. Second, we have used the PRI(Pulse Repetition Interval) tracking loop to control the switching timing of the input radar and the output jamming signal. Finally, we have demonstrated the performance and effectiveness of the proposed methods through the sea trial.

Design and Simulation a New Unique-Slit Reticle for Pulsed Infrared Seekers

  • Yasin, Sair Alcekh;Erfanian, Ali Reza;Mosavi, Mohammad Reza;Mohammadi, Ali
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Spin reticle infrared seekers have good linearity, and the pulse-modulated reticle seekers have good digital characteristics for anti-jamming processing. A basic design for a spin pulse-modulated reticle is introduced. This design uses the rotating design of the optical system in the spin infrared seekers and an improved design of the reticle in the pulse-modulated seekers. The reticle contains a unique well-designed slit to produce one pulse for each target in the spinning period. The target data will be carried by the unique pulse parameters. A simulation tool is implemented using the MATLAB packages for analyzing and evaluating the new design.

A Study on Jammer Suppression Algorithm for Non-stationary Jamming Environment (재머의 크기가 변하는 환경에서의 억제 알고리즘 연구)

  • Yoon, Ho-Jun;Lee, Kang-In;Chung, Young-Seek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.239-247
    • /
    • 2018
  • Adaptive Beamforming (ABF) algorithm, which is a typical jammer suppression algorithm, guarantees the performance on the assumption that the jamming characteristics of the TDS (Training Data Sample) are stationary, which are obtained immediately before and after transmitting the pulse signal. Therefore, effective jammer suppression can not be expected when the jamming characteristics are non-stationary. In this paper, we propose a new jammer suppression algorithm, of which power spectrum fluctuates fast. In this case, we assume that the location of the jammer station is fixed during the processing time. By applying the MPM (Matrix Pencil Method) to the jamming signal in TDS, we can estimate jammer parameters such as power and incident angle, of which the power will vary fast in time or range bins after TDS. Though we assume that the jammer station is fixed, the estimated jammer's incident angle has an error due to the noise, which degrades the performance of the jammer suppression as the jammer power increases fast. Therefore, the jammer's incident angle should be re-estimated at each range bin after TDS. By using the re-estimated jammer's incident angle, we can construct new covariance matrix under the non-stationary jamming environment. Then, the optimum weight for the jammer suppression is obtained by inversing matrix estimation method based on the matrix projection with the estimated jammer parameters as variables. To verify the performance of the proposed algorithm, the SINR (signal-to-interference plus noise ratio) loss of the proposed algorithm is compared with that of the conventional ABF algorithm.