• Title/Summary/Keyword: Pulse Waves

Search Result 307, Processing Time 0.029 seconds

Design of power and phase feedback control system for ion cyclotron resonance heating in the Experimental Advanced Superconducting Tokamak

  • L.N. Liu;W.M. Zheng;X.J. Zhang;H. Yang;S. Yuan;Y.Z. Mao;W. Zhang;G.H. Zhu;L. Wang;C.M. Qin;Y.P. Zhao;Y. Cheng;K. Zhang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.216-221
    • /
    • 2024
  • Ion cyclotron range of frequency (ICRF) heating system is an important auxiliary heating method in the experimental Advanced Superconducting Tokamak (EAST). In EAST, several megawatts of power are transmitted with coaxial transmission lines and coupled to the plasma. For the long pulse and high power operation of the ICRF waves heating system, it is very important to effectively control the power and initial phase of the ICRF signals. In this paper, a power and phase feedback control system is described based on field programmable gate array (FPGA) devices, which can realize complicated algorithms with the advantages of fast running and high reliability. The transmitted power and antenna phase are measured by a power and phase detector and digitized. The power and phase feedback control algorithms is designed to achieve the target power and antenna phase. The power feedback control system was tested on a dummy load and during plasma experiments. Test results confirm that the feedback control system can precisely control ICRF power and antenna phase and is robust during plasma variations.

Reproducibility of Regional Pulse Wave Velocity in Healthy Subjects

  • Im Jae-Joong;Lee, Nak-Bum;Rhee Moo-Yong;Na Sang-Hun;Kim, Young-Kwon;Lee, Myoung-Mook;Cockcroft John R.
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.4 no.2
    • /
    • pp.19-24
    • /
    • 2006
  • Background: Pulse wave velocity (PWV), which is inversely related to the distensibility of an arterial wall, offers a simple and potentially useful approach for an evaluation of cardiovascular diseases. In spite of the clinical importance and widespread use of PWV, there exist no standard either for pulse sensors or for system requirements for accurate pulse wave measurement. Objective of this study was to assess the reproducibility of PWV values using a newly developed PWV measurement system in healthy subjects prior to a large-scale clinical study. Methods: System used for the study was the PP-1000 (Hanbyul Meditech Co., Korea), which provides regional PWV values based on the measurements of electrocardiography (ECG), phonocardiography (PCG), and pulse waves from four different sites of arteries (carotid, femoral, radial, and dorsalis pedis) simultaneously. Seventeen healthy male subjects with a mean age of 33 years (ranges 22 to 52 years) without any cardiovascular disease were participated for the experiment. Two observers (observer A and B) performed two consecutive measurements from the same subject in a random order. For an evaluation of system reproducibility, two analyses (within-observer and between-observer) were performed, and expressed in terms of mean difference ${\pm}2SD$, as described by Bland and Altman plots. Results: Mean and SD of PWVs for aorta, arm, and leg were $7.07{\pm}1.48m/sec,\;8.43{\pm}1.14m/sec,\;and\;8.09{\pm}0.98m/sec$ measured from observer A and $6.76{\pm}1.00m/sec,\;7.97{\pm}0.80m/sec,\;and\;\7.97{\pm}0.72m/sec$ from observer B, respectively. Between-observer differences ($mean{\pm}2SD$) for aorta, arm, and leg were $0.14{\pm\}0.62m/sec,\;0.18{\pm\}0.84m/sec,\;and\;0.07{\pm}0.86m/sec$, and the correlation coefficients were high especially 0.93 for aortic PWV. Within-observer differences ($mean{\pm}2SD$) for aorta, arm, and leg were $0.01{\pm}0.26m/sec,\;0.02{\pm}0.26m/sec,\;and\;0.08{\pm}0.32m/sec$ from observer A and $0.01{\pm}0.24m/sec,\;0.04{\pm}0.28m/sec,\;and\;0.01{\pm}0.20m/sec$ from observer B, respectively. All the measurements showed significantly high correlation coefficients ranges from 0.94 to 0.99. Conclusion: PWV measurement system used for the study offers comfortable and simple operation and provides accurate analysis results with high reproducibility. Since the reproducibility of the measurement is critical for the diagnosis in clinical use, it is necessary to provide an accurate algorithm for the detection of additional features such as flow wave, reflection wave, and dicrotic notch from a pulse waveform. This study will be extended for the comparison of PWV values from patients with various vascular risks for clinical application. Data acquired from the study could be used for the determination of the appropriate sample size for further studies relating various types of arteriosclerosis-related vascular disease.

  • PDF

Quality Management Platform of Ocher Concrete Using Nondestructive Tests Based on the Stress Waves (응력파기반 비파괴검사법을 이용한 황토콘크리트 품질관리 플랫폼)

  • Hong, Seong-Uk;Kim, Seung-Hun;Kim, Seong-Yeob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.120-127
    • /
    • 2016
  • Several problems including respiratory and skin disorders due to the problems for sick house syndrome have occurred, there appears echo friendly materials to solve the problems. The research is lacking in quality management techniques ocher concrete using nondestructive tests. In this research, the experimental works were conducted to study the initial quality control for the compressive strength of Ocher concrete(21 MPa). The purpose of this study is the implementation platform for quality management of ocher concrete using nondestructive tests. It uses the relationship between the compressive strength and ultrasonic pulse velocity of the ocher concrete to estimate the compressive strength of the ocher concrete. And using the impact echo method to estimate the thickness of the ocher concrete. The platform is based on a Java script, so that the user can obtain the data through the platform.

Engine Ignition Timing Control Circuit Using Microcomputer (마이크로 컴퓨터를 이용(利用)한 엔진점화시기(點火時期) 제어회로(制御回路))

  • Min, Y.B.;Lee, K.M.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.1
    • /
    • pp.45-52
    • /
    • 1987
  • In order to improve the thermal efficiency of an internal combustion engine, various ignition timing control systems were examined and the best one was chosen. The parts used for the systems were a microcomputer system with DAS, 8 bit output port (D-FLIP FLOP), three types of isolation circuit, two types of ignition timing pulse generator, three types of switching circuit and two types of high voltage ignition circuit. Most systems did not operate well due to the effects of electromagnetic waves and surge currents occurring when the ignition began or ended with resulting high voltage. The best ignition timing control system was found to be the combination of (microcomputer system)-(ignition timing pulse generator using step motor position control pick-up)-(switching circuit using TR logic)-(high voltage ignition circuit using CDI).

  • PDF

Computational Study of The Pulse Waves Discharged From The Open End of a Duct (관 출구로부터 방출되는 펄스파의 수치해석적 연구)

  • Kim, H.D.;Kim, H.S.;Kweon, Y.H.;Lee, D.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.355-360
    • /
    • 2001
  • This study addresses a computational work of the impulsive wave which is discharged from the open end of a pipe. An initial compression wave inside the pipe is assumed to propagate toward atmosphere. The over pressure and wave-length of the initial compression wave are changed to investigate the characteristic values of the impulsive wave. The second order total variation diminishing (TVD) scheme is employed to solve the axisymmetric, compressible, unsteady Euler equations. The relationship between the initial compression wave form and impulsive wave is characterized in terms of the peak pressure of the impulsive wave and its directivity. The results obtained show that for the initial compression wave of a large wave-length the peak pressure of the impulsive wave does not depend on the over pressure of the initial compression wave, but for the initial compression wave of a very short wave-length, like a shock wave, the peak pressure of the impulsive wave is increased with an increase in the over pressure of the initial compression wave. The directivity of the impulsive wave to the pipe axis becomes significant with a decrease in the wave-length of the initial compression wave.

  • PDF

Estimation of Nonlinear Parameter in Water - saturated Sandy Sediment by using Difference Frequency Acoustic wave (수중 모래 퇴적물에서 차 주파수 음파를 이용한 비선형 변수 추정)

  • Kim Byoung-Nam;Lee Kang Il;Yoon Suk Wang;Choi Bok Kyung
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.429-432
    • /
    • 2004
  • Nonlinear acoustic responses of water-saturated sediments are very important to understand nonlinear phenomena of gassy ocean sediments. Especially, the second harmonic, the sum and the difference frequency acoustic waves in water-saturated sediments can provide practical criteria to estimate the nonlinear parameter of gassy sediments. In this paper, the difference frequency acoustic wave in water-saturated sandy sediment was observed in a water tank experiment with a pulse transmission technique. Its pressure level was 12 dB higher than the background noise level at a maximum undistorted driving pressure of source acoustic transducer. The experimental results were compared with a theoretical estimation of the parametric acoustic array. The nonlinear parameter of water-saturated sandy sediment was also estimated as 73 with their comparison. This value can be utilized as the background information to estimate gas void fraction in the water-saturated gassy sandy sediment.

  • PDF

Effect of Ultrasonic Vibration on the Friction and Wear Characteristics of Aluminum Alloy (초음파 진동이 알루미늄 합금의 마찰 마모 특성에 미치는 영향)

  • Park, Jae-Nam;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.34 no.4
    • /
    • pp.132-137
    • /
    • 2018
  • Ultrasonic waves are used in various applications in multiple devices, sensors, and high-power machinery, such as processing machines, welders, and cleaners, because the acoustic vibration frequencies are above the human audible frequency range. In ultrasonic machining, electrical energy at a high frequency of 20 kHz or more is converted into mechanical vibration by a vibrator and an amplifier. This technique allows instantaneous separation between a tool and a workpiece during machining, machining by pulse impulse force at the time of re-contact and minimizes the minute elastic deformations of the workpiece and machine tools due to the cutting effect. The Al7075 alloy used in this study is a typical aluminum alloy with superior strength that is mainly used in aircrafts, automobiles, and sporting goods. To investigate the optimal conditions for machining aluminum alloy using ultrasonic vibration, the present experiment utilized the Taguchi orthogonal array method, and the coefficient of friction was analyzed using the characteristics of the Taguchi technique. In ultrasonic friction and abrasion tests, the changes in the friction coefficient were measured in the absence of ultrasonic vibrations and at 28 kHz and 40 kHz. As a result, the most considerable influence on the friction coefficient was found to be the normal load, and the frequency of ultrasonic vibrations increases, the coefficient of friction increases. It was thus confirmed that the amount of wear increases when ultrasonic vibration is applied.

Efficient Single-Pass Optical Parametric Generation and Amplification using a Periodically Poled Stoichiometric Lithium Tantalate

  • Yu, Nan-Ei;Lee, Yong-Hoon;Lee, Yeung-Lak;Jung, Chang-Soo;Ko, Do-Kyeong;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.192-195
    • /
    • 2007
  • A high-conversion efficiency, nanosecond pulsed optical parametric generation and amplification with repetition rate of 20 kHz based on a periodically poled MgO-doped stoichiometric lithium tantalate was presented. Pumped by a Q-switched $Nd:YVO_4$ laser at 1064 nm with a pumping power of 4.8W, the generated output power was 1.6W for the signal and idler waves, achieving a slope efficiency of 50%. Using a seed source at signal wave the amplified signal output-pulse energy reached $65{\mu}J$. The obtained maximum gain was 72.4 dB.

Simultaneous Determination of Ranitidine and Metronidazole at Poly(thionine) Modified Anodized Glassy Carbon Electrode

  • Rahman, Md. Mahbubur;Li, Xiao-Bo;Jeon, Young-Deok;Lee, Ho-Joon;Lee, Soo Jae;Lee, Jae-Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.90-94
    • /
    • 2012
  • A simple and sensitive electrochemical sensor for simultaneous and quantitative detection of ranitidine (RT) and metronidazole (MT) was developed, based on a poly(thionine)-modified anodized glassy carbon electrode (PTH/GCE). The modified electrode showed the excellent electrocatalytic activity towards the reduction of both RT and MT in 0.1M phosphate buffer solution (PBS, pH 7.0). The peak-to-peak separations (${\Delta}E_p$) for the simultaneous detection of RT and MT between the two reduction waves in CV and DPV were increased significantly from ca. 100 mV at anodized GCE, to ca. 550 mV at the PTH/GCE. The reduction peak currents of RT and MT were linear over the range from 35 to $500{\mu}M$ in the presence of 200 and $150{\mu}M$ of RT and MT, respectively. The sensor showed the sensitivity of 0.58 and $0.78{\mu}A/cm^2/{\mu}M$ with the detection limits (S/N = 3) of 1.5 and $0.96{\mu}M$, respectively for RT and MT.

Mathematical Modeling for Estimation of Heart Work (심장 일의 측정을 위한 수학적 모델링)

  • Suh, Sang-Ho;Kaptan, Yalin;Roh, Hyung-Woon;Song, Ji-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.145-151
    • /
    • 2012
  • Evaluation of the heart work is starting to emerge as a new diagnostic tool for arterial diseases. The aim of this study is to develop a mathematical model for the estimation of heart work utilizing the pulse waves between two points of a vessel. In order to calculate heart work, medical data such as blood pressure waveforms (which are measured using a cuff) are utilized. The heart work is calculated by employing the modified Windkessel model together with the viscosity models of Casson or Herschel-Bulkely (H-B). The results indicate that the compliance values at the proximal and distal locations differ for the Casson and H-B models.