• Title/Summary/Keyword: Pulse Rate Measurement

Search Result 138, Processing Time 0.025 seconds

The Study for Apical Pulse Measurement Technique Through Hospitalized Children (입원한 영유아의 심첨 맥박 측정 방법에 관한 연구)

  • Cho Kyung Mi;Kim Eun Joo
    • Child Health Nursing Research
    • /
    • v.5 no.1
    • /
    • pp.48-58
    • /
    • 1999
  • The purpose of this study was to determine the most accurate technique measuring the apical pulse rate, using three counting duration 15, 30 and 60 seconds, and two methods start ‘0’ and start ‘1’. The instrument used in the study was the EKG monitor, stethoscope and stopwatch. Data was analyzed by utilizing SPSSWIN program. General characteristics of the subjects were analyzed by frequency, percentile, mean, SD. The subject of this research is made up of 46 children and 20 nurses. The children were infants, & under the age of 5. They were hospitalised in PICU & NICU in 2 tertiary hospitals in seoul from Jan. 1. 1998 to Sep. 10. 1998. The measurement of starting 1 & measurement of starting ‘0’ used the T-test to find out the measurement error. Apical pulse duration of 15, 30, 60 seconds were used to find out measurement error, the measurement error depend on experience of Nurse were analyzed by using ANOVA. The result of this study are as follows. 1. When comparing the starting poin of apical pulse 0&1, starting with 1 the measurement error is less, but not statiscally significant. 2. When counting the apical pulse by 15, 30,60 sec. ; 60 seconds counting duration was more accurate, but not statistically significant. 3. The mean of measure error ; Group under 100/min, is 10.33 ; from 100 re 119/min, is 8.30 ; from 120 to 139/min, is 4.76 ; from 140 to 159/min, is 6.09 ; above 160, is 17.83. The differences of these groups are statistically significant. When 60sec were counted, under 140/min the mean of measurement error is 3.4. Also when 30 seconds were counted from 140/min to 159/min the measurement error is 7.14, above 160/min the measurement error is 16.4. That measurement mean is the smallest than the other durations. During the 15 sec. count the measurement error was the largest of them all. 4. By the experience of the nurses, the apical pulse count measurement error was discovered. Under a year experience this measurement error was the largest(11.09), 1 year to under 3 years, the error is the smallest(4.86). 3 year to under 6 years the error is 8.33, 5 years above the error is 6.11 but this is not statistical significant. Under a year experience when counting 15, 30, 60 seconds the error is the largest. The group of the nurses from a year to under 3 years, the measurement error is the smallest of all the groups. The result of the study is to determine the technique measuring the apical pulse rate, Hargest (1974), starting point ‘0’ is not proved. When the pulse rate increases the 30 sec measurement rate is accurate. Under 140/min the 60 sec measurement rate is the most accurate. Depending on the nurses experiences, there is a variable difference to the apical pulse rate measurement. Especially new nurses training courses should enforce the children’s pulse rate count and the basic vital signs.

  • PDF

Assessment of Corrosion Rate of Reinforcing Steel in Concrete Using Galvanostatic Pulse Transient Technique

  • So, Hyoung-Seok;Millard, Stephen Geoffrey
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.83-88
    • /
    • 2007
  • This paper discusses a method of measuring transient potential response of a corrosion interface to a small galvanostatic pulse perturbation for a rapid assessment of the corrosion rate of reinforcing steel in concrete structures. Measurements were taken on 100 mm sections of steel bars which were subjected to a wide range of corrosion conditions, from passive steel to actively corroding steel. The duration of the applied galvanostatic pulse was varied between 5s and 180s, and the lateral distance of the point of measurement on the steel bar varied from zero to 400 mm. The result of the electrochemical transient response was investigated using a typical sampling rate of 1 kHz. Analysis of the transient potential response to the applied galvanostatic pulse has enabled the separation of equivalent electronic components so that the components of a series of capacitances and resistances, whose values are dependent on the corrosion condition of the reinforcing steel, could be isolated. The corrosion rate was calculated from a summation of the separate resistive components, which were associated with the corrosion interface, and was compared with the corrosion rate obtained from linear polarization resistance (LPR) method. The results show that the galvanostatic pulse transient technique enables the components of the polarization resistance to be evaluated separately so as to give more reliable corrosion rate values than those obtained from the LPR method. Additionally, this paper shows how the galvanostatic pulse transient response technique can be implemented. An appropriate measurement time for passive and actively corroding reinforcing steel is suggested for the galvanostatic pulse transient response measurements in the field site.

Variation Factor Assessment of Radial Artery Pulse by the Tonometry Angle of the Pulse Pressure Sensor (토노메트리 방식 맥파 측정의 가압 각도에 따른 변동성 평가)

  • Jung, Chang Jin;Jo, Jung Hee;Jun, Min-Ho;Jeon, Young Ju;Kim, Young-Min
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.138-142
    • /
    • 2016
  • A pulse measurement by tonometry provides useful information for diagnosis, including not only blood pressure and heart rate but also parameters for estimating a condition of the cardiovascular system. Currently, various pulse measurement devices based on the tonometry have been developed. A reliability of these devices is determined by a positioning technic between the sensor and the blood vessel and a controlling technique of the pressurization level. An angle of the sensor for the pulse measurement seems to be highly related with a measured signal, however, the objective studies for this issue have been not published. In this paper, the variation of the pulse signals by tonometry direction was experimentally assessed according to the angle of the sensor. In order for guaranteeing the repeatability of the experiment, we used a pulse generator device, which can generate human pulse signal by using silicon tube and fluid pump, and developed a structure for precise adjustment of the angle and the pressurization level of the sensor. The angle of the sensor was acquired by an inclinometer, which was attached at the opposite side of the sensor. As results, a coefficient of variation (CV) of a maximum amplitude (MA) of the pulse wave was largely increased over the angle range of $-9{\sim}9^{\circ}$. Furthermore, the changes of the pulse shape showed different aspects according to the sign of the angle tilted along the blood vessel. It is expected that the results of this study can be helpful for developing more precise pulse measurement devices based on the tonometry and applying in clinic.

Implementation of the Pulse Wave Measurement System Using Bipolar Biased Head on Mode of the Hall Sensor (홀 센서의 양극 바이어스 수직모드를 이용한 맥파측정시스템 구현)

  • Jin, Sang-Gon;Kim, Myoung-Nam
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.322-328
    • /
    • 2011
  • There are many ways to detect the heart rate non-invasively such as ECG, PPG, strain gauge, and pressure sensor. In this paper, the pulse wave measurement system using bipolar biased head on mode of the Hall sensor is proposed for measuring the radial artery pulse. TMS320F2812 was used to implement the proposed system and a portable wireless network(zig-bee) was used to show the experimental result. It was confirmed from experiment that the performance of the implemented system was more stable and faster than PPG sensor or piezoelectric film pressure sensor.

Development of 3-channel Pulse Wave Measurement System (3채널 맥파 측정 시스템 개발)

  • Kim, Eun-Geun;Heo, Hyun;Nam, Ki-Chang;Kang, Hee-Jung;Huh, Young
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1049-1050
    • /
    • 2008
  • It is difficult to measure the pulse wave in a short time because radial artery position and located depth are different depending on the person. In this paper, the pulse wave measurement system was developed using 3 channel piezoresistive sensor array to detect the most significant pulse wave. Augmentation Index(AI) and Heart Rate(HR) analysis are also available for predicting cardiovascular risks. The developed system is small and easy to use. And it is promising to be used as home healthcare device.

  • PDF

Transition-limited pulse-amplitude modulation technique for high-speed wireline communication systems

  • Eunji Song;Seonghyun Park;Jaeduk Han
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.974-981
    • /
    • 2023
  • This paper presents a transition-limited pulse-amplitude modulation (TLPAM) signaling method to enable a high data rate and robust wireline communications. TLPAM signaling addresses the impact of high intersymbol interference (ISI) ratios in conventional M-ary PAM signaling methods by limiting the maximum voltage transition level between adjacent symbols. The implementation of a TLPAM signaling encoder is realized by setting back the most significant bits (MSBs) in the queue. The correlation between TLPAM's maximum transition level, effective data rate, and eye width/height is analyzed with various channel loss parameters, followed by characterization and measurement results with a realistic channel setup. The analysis and experimental results reveal the effectiveness of the proposed TLPAM signaling scheme for achieving a high data rate with minimal interference.

Measurement of workload by cardiac arrhythmia (부정맥을 이용한 작업부하의 평가)

  • 박영택;박경수
    • Journal of the Ergonomics Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.3-10
    • /
    • 1983
  • While three subjects were running on treadmill at five different speeds, their heart beat interval times were measured and analyzed. From the analysis, we discovered some relation- ships between workload and cardiac response, especially cardiac arrhythmia. Using these relationships, a physioligical model for estimating workload was developed. Although pulse rate has been considered as a good measure of physical load, this study shows that it is highly subject dependent and therefore unsuitable for task evalution. It is recommended to use range of heart beat interval times rather than pulse rate in the evaluation of light work.

  • PDF

An adaptive pulse measurement mechanism using ECG sensor node based on Zigbee (지그비 기반의 심전도 센서노드를 사용한 적응형 심박탐지 모델)

  • Lee, Byung-Mun;Park, Yeon-Hee;Lee, Young-Ho
    • Journal of Internet Computing and Services
    • /
    • v.10 no.3
    • /
    • pp.27-33
    • /
    • 2009
  • With the upcoming u-healthcare era, a way of measurement for vital sign monitoring of cardiac patients is changing as well. In existing measurement of cardiac patients, various wire in ECG measuring equipment has caused much discomfort and inconvenience. In order to decrease the problem, we are developing an efficient measurement of ECG signal using Wireless sensor network. In this paper, we present a way to reduce amount of data by transmitting ECG data collected from radio electrocardiogram sensor based on Zigbee after calculating cardiac rate. And in order to control the error which can be caused by the different ECG signal intensity each individual can has, we also suggest an adaptive pulse measurement model which can measure heart rate with correcting according to different ECG intensity. To verify the suggested model, sensor application was developed and the data was acquired in TinyOS 2.0 environment and the adaptive pulse measurement model was evaluated through the data from the experiments.

  • PDF

Method for Determining the Deficient and Solid Pulse with a New Pulse Wave Parameter (새로운 맥상 파라메터를 이용한 허실맥 판단 방법)

  • Kim, Sung-Hun;Kim, Jae-Uk;Jeon, Young-Ju;Kim, Keun-Ho;Kim, Jong-Yoel
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.42-47
    • /
    • 2010
  • The pulse diagnosis is an important method in Oriental Medicine. Recently, there have been continuous attempts to replace the finger palpation by Oriental medical doctors (OMDs) by more objective tools based on machines, e.g., pulse analyzers. To improve the performance of the pulse analyzers, both the machine-appropriate interpretations for the pulse images appeared in the literature and the improvement in the repeatability and reproducibility of the measurement sensors are to be developed. As an attempt towards the transformation of the pulse images in terms of machine-appropriate language, in this work, we suggest an upgraded algorithm for the solid/deficient pulses, which are the two representative pulse images informing us how strong the pulse pressure is. It has been argued that one could determine the solid/deficient pulses by the maximum pulse pressure from pulse analyzers. However, by a clinical test, we found that the maximum pulse pressure alone is not sufficient to determine the solid/deficient pulses. In addition to the maximum pulse pressure, the mean pulse pressure averaged over for five different hold-down pressures(3-D MAC) is needed to improve the agreement with the OMD's decision for the solid/deficient pulse. We found that, among the data diagnosed with having either the solid pulse or deficient pulse by OMDs, the novel algorithm showed 86.0% diagnosis rate and 81.6% concordance rate.

A Study of PPG Wave and Pulse Measurement on Radial Artery Using Digital Potentiometer and Exponentially Weighted Moving Average Filter (디지털 가변저항과 지수가중 이동평균필터를 통한 요골동맥에서의 PPG 파형과 맥박 측정에 관한 연구)

  • Jung, In-Bok;Kim, Kyung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.962-967
    • /
    • 2014
  • In this paper, through a digital potentiometer and exponentially weighted moving average filter, pulse and PPG waveform measurable device was fabricated in radial artery. If this device is not proper about signal size in analog part, MCU can judge easily by adjusted amplification through digital potentiometer, using exponentially weighted moving average filter is able to filter out more clear value of ADC. I presumed pulse rate as value of measuring time between point of maximum contraction from sensing signal in radial artery of wrist. Therefore, this means can measure stable pulse rate and PPG waveform, finger as well as radial artery, whether signal size of each person is different finger as well as radial artery.