• Title/Summary/Keyword: Pulse Generators

Search Result 36, Processing Time 0.027 seconds

A Comparative Study of Transistor and RC Pulse Generators for Micro-EDM of Tungsten Carbide

  • Jahan, Muhammad Pervej;Wong, Yoke San;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.3-10
    • /
    • 2008
  • Micro-electrical discharge machining (micro-EDM) is an effective method for machining all types of conductive materials regardless of hardness. Since micro-EDM is an electro-thermal process, the energy supplied by the pulse generator is an important factor in determining the effectiveness of the process. In this study, an investigation was conducted on the micro-EDM of tungsten carbide (WC) to compare the performance of transistor and resistance/capacitance (RC) pulse generators in obtaining the best quality micro-hole. The performance was measured by the machining time, material removal rate, relative tool wear ratio, surface quality, and dimensional accuracy. The RC generator was more suited for minimizing the pulse energy, which is a requirement for fabricating micro-parts. The smaller-sized debris formed by the low-discharge energy of RC micro-EDM could be easily flushed away from the machined zone, resulting in a surface free of burrs and resolidified molten metal. The RC generator also required much less time to obtain the same quality micro-hole in WC. Therefore, RC generators are better suited for fabricating micro-structures, producing good surface quality and better dimensional accuracy than the transistor generators, despite their higher relative tool wear ratio.

The Characteristics of the Output Voltage Ferroelectrics for High Voltages Pulse Generators (고전압 펄스 발생기를 위한 강유전체의 전압 출력 특성)

  • Jang, Dong-Gwan;Choi, Sun-Ho;Hwang, Sunl-Mook;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1408-1412
    • /
    • 2013
  • High power pulse generating technology is to accumulate the energy for relatively long and then to create a strong force by emitting the energy very fast. High power pulse generating technology has recently been using in various fields like environments, industry, research, military and so on. Numerous studies about high power pulse generators have already been performed and commercialized in various conditions. However, in aspect of their size and weight, it is hard to carry the generators which currently have been developed. For these reasons, din nations like America or Russia, the researches have been performed for Ferroelectric Generators(FEG), which have relatively simple structure and are economical. To realize the ferroelectric generator, in this study, we selected the PZTs which have different physical properties respectively, and then shocked them using explosives. The PZT samples with volumes of $0.31{\sim}0.94cm^3$ were depolarized by shocked and produced the waveform that have peak voltages of 4.28 ~ 15kV. The lowest relative permittivity sample generated much higher peak voltage. And sudden voltage drops which seem to be caused by dielectric breakdown were observed in some experiments using low young's modulus samples. Also, increase in thickness led to increase in peak voltage, but the ratio of the voltage rise did not reach the ration of the thickness increase.

Simulations for Square Pulse Generators

  • Jeong I. W.;Lee H. J.;Rim G. H.;Pavlov E. P.;Kim J. S.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.132-135
    • /
    • 2001
  • The design of square pulse generators using pulse forming lines (PFLs) made up of identical L and C, was reviewed in this study. 14 different types of PFLs were analyzed utilizing PSpice simulation results. These PFLs were characterized with respect to their distinct features: the number of forming lines (single or double), the circuit relationship between PFL and load (parallel or series), the types of energy storage (voltage source, current source or a combination of both). The characteristic impedances, output parameters such as pulse width, voltage and current magnitudes, and powers were derived for each scheme. The merits and demerits of the output parameters were also included.

  • PDF

Practical Implementation of Maximum Power Tracking Based Short-Current Pulse Method for Thermoelectric Generators Systems

  • Yahya, Khalid;Bilgin, Mehmet Zeki;Erfidan, Tarik
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1201-1210
    • /
    • 2018
  • The applications of thermoelectric generators (TEGs) have received a lot of attention both in terms of harvesting waste thermal energy and the need for multi-levels of power. It is critical to track the optimum electrical operating point using DC to DC converters controlled by a pulse that is generated through a maximum power point tracking algorithm (MPPT). In this paper, the hardware implementation of a short-current pulse algorithm has been demonstrated under steady stated and transient conditions. In addition, the MPPT algorithm has been proposed, which is one of the most effective and applicable algorithms for obtaining the maximum power point of TEGs. During this study, the proposed prototype has been validated both analytically and experimentally. It has also demonstrated successful performance, which highlights the claimed advantages of the proposed MPPT solution.

A Study on the Comparision of Performance between Three-phase Full-wave and Single-phase Full-wave X-ray Generators (삼상(三相)12펄스 전파정류장치(全波整流裝置)와 단상(單相) 전파정류장치(全波整流裝置)의 성능(性能) 비교(比較))

  • Kim, Young-Ill;Kim, Chang-Kyun;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.3 no.1
    • /
    • pp.81-86
    • /
    • 1980
  • To compare three-phase 12-pulse full-wave X-ray generators with single-phase full-wave X-ray generators on their performance of outputs, authors studied the generating X-ray by means of exposure dose and radiographic density. The results were as follows; 1. The exposure doses of three-phase full-wave X-ray generators showed a 30%-60% increase as compared against of single-phase full-wave generators. 2. The transmitted doses of three-phase full-wave generators were more increased than single-phase full-wave X-ray generators. 3. To obtain the same density, 60kVp in three-phase full-wave generators were equivalent to $60{\sim}65kVp$ in single-phase full-wave generators, and 100kVp in those generators were equivalent to $100{\sim}125kVp$ in these generators.

  • PDF

Illumination Control of LEDs in Visible Light Communication Using Manchester Code Transmission

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.303-309
    • /
    • 2016
  • In this paper, we introduce a new method for controlling the illumination of LEDs in visible light communication (VLC) by changing the duty cycle of Manchester code. When VLC data were transmitted in Manchester code, the average optical power of the LEDs was proportional to the duty cycle. In experiments, we controlled the illumination of a $3{\times}3$ LED array from 10% to 90% of its peak value by changing the duty cycle of the Manchester code. The synchronizing clocks required for encoding and decoding the Manchester code were supplied by pulse generators that were connected to a 220 V power line. All pulse generators made the same pulses with a repetition frequency of 120 Hz, and they were synchronized with the full-wave rectified voltage of the power line. This scheme is a very simple and useful method for constructing indoor wireless sensor networks using LED light.

High Efficiency Ozone Generation Using a Pyramid-Project-Embossed Rod-to-Cylinder Electrode and a Pulse Corona Discharge (도깨비봉형 오존발생장치이 펄스커로나 방전에 의한 오존 발생 특성)

  • 문재덕;이근택
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.8
    • /
    • pp.650-657
    • /
    • 1989
  • The conversion efficiency of an ozone generator can be significantly improved by modifying the discharge electrode of a helical strip line rod-to-cylinder type ozone generator to a pyramid-project-embossed rod, and by using a pulse corona discharge. Parametric studies have been carried out to obtain optimum values of peak pulse voltage, pulse forming capacitance, feeder cable and ozone generator capacitance, interelectrode spacing and corona tip density of ozone generator, and feed air flow rate and temperature. The generated ozone concentration was very dependent upon the value of pulse forming capacitance, feeder cable and ozone generator capacitance, and corona tip density. Maximum conversion efficiency was obtained with a pulse forming capacitance of about 500pF, 75pF matched feeder cable and ozone generator, and a corona tip density of 16mm. When operated at optimum values, ozone yield of 79, 99, 80 g/KWh for the different interelectrode type ozone generators tested were obtained, which are approximately 30% higher than that of an industrial ozone generator.

  • PDF

A Study on Active and Reactive Power Control for Efficient Operations of Wind Farm (유.무효 전력 제어를 통한 풍력발전단지의 효율적인 운전)

  • Jang, Sung-Il;Kim, Ji-Won;Kim, Kwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1351-1354
    • /
    • 2002
  • Wind farm which are composed with wind turbine generators can be a good alternatives to solve environmental problem and solutions to cope with energy crisis for using wind energy. Until now, these wind turbine generators have been being studied on the viewpoint of only active power control for reducing the burden of main grid. In this control scheme, we might demand a reactive power compensator in order to make reparation for the reactive power produced from wind turbine generator itself. Therefore, if the reactive power as well as active power of wind turbine generator were controlled according to the demand of reactive power, the installation of a additional reactive power compensator could be reduced. This paper presents the control method of a active and reactive power for wind turbine generators by means of SVPWM(Space Vector Pulse Width Modulation) inverting method and describes a operational coordination of wind turbine generators. The proposed power control algorithm can simply produce the output power of wind turbine generator needed in wind farm, which can reduce the power of main grid more and exclude a supplementary reactive power compensator. We assumed that wind farm are composed with two kinds of wind turbine generators, AC/DC/AC and induction generator types.

  • PDF

Development of Capacitance Measuring Equipment for Electrostatic Precipitator

  • Kim, Seung-Min;Lee, Sung-Jin;Nam, Jung-Han;Cho, Chang-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.128.2-128
    • /
    • 2001
  • Since pulse energization can improve the performance of Electrostatic Precipitator(ESP) for high resistivity dusts, high voltage micro-pulse generators, 70kV 140usec duration pulses for instance, are commonly developed by LC resonance for most pulse powered ESPs. Consisting of discharge electrodes and collecting electrodes, ESP has its own capacitance like a capacitor. ESP's capacitance affects the LC resonance phenomenon with resonance inductor and capacitor of micro-pulse power supply, engineers should acquire the value of their ESP to design for proper power supply design. In this study, we describe the ESP's capacitance measuring device which has the same topology with our new developed micro-pulse power supply. In this microcontroller based capacitance measuring equipment, ESP's capacitance can be calculated easily through ...

  • PDF