• 제목/요약/키워드: Pulse Coupled Neural Network

검색결과 10건 처리시간 0.025초

컬러영상에서 Pulse-Coupled Neural Network를 이용한 얼굴 추출 알고리즘 (Face Detection Algorithm Using Pulse-Coupled Neural Network in Color Images)

  • 임영완;나진희;최진영
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.292-296
    • /
    • 2004
  • 본 논문에서는 컬러영상에서 Pulse-Coupled Neural Network를 이용한 얼굴 추출 알고리즘의 성능을 향상시키는 방법에 대하여 논의하였다. 색상정보를 이용한 얼굴 추출 알고리즘은 얼굴의 기울어진 정도나 크기 둥에 영향을 받지 않으므로, 형태정보를 이용한 얼굴 추출 알고리즘에 비해 비교우위를 가진다. 그러나 조명의 변화가 심하거나, 피부색과 유사한 배경이 포함되어 있을 경우 적절한 성능을 내기 어렵다. 이러한 문제점들을 해결하기 위해 본 연구에서는 넓은 피부색 영역을 추출하고, Pulse-Coupled Neural Network를 통해 공간적으로 근접한 피부색 동종영역을 분리해 내는 방법을 사용하였다. 그리고 피부색 영역에 해당하는 픽셀들이 다른 영역들에 비해 큰 값을 갖도록 하여, Pulse-Coupled Neural Network의 linking coefficient를 보다 쉽게 결정하도록 하였다.

  • PDF

컬러영상에서 Pulse-Coupled Neural Network를 이용한 얼굴 추출 알고리즘 (Face Detection Algorithm Using Pulse-Coupled Neural Network in Color Images)

  • 임영완;나진희;최진영
    • 한국지능시스템학회논문지
    • /
    • 제14권5호
    • /
    • pp.617-622
    • /
    • 2004
  • 본 논문에서는 컬러영상에서 Pulse-Coupled Neural Network를 이용한 얼굴 추출 알고리즘의 성능을 향상시키는 방법에 대하여 논의하였다. 색상정보를 이용한 얼굴 추출 알고리즘은 얼굴의 기울어진 정도나 크기 등에 영향을 받지 않으므로, 형태정보를 이용한 얼굴 추출 알고리즘에 비해 비교우위를 가진다. 그러나, 조명의 변화가 심하거나 피부색과 유사한 배경이 포함되어 있을 경우 적절한 성능을 내기 어렵다. 이러한 문제점들을 해결하기 위해 본 논문에서는 실험을 통해 피부색의 평균과 분산 값을 미리 구한 후, 전처리 과정을 거쳐 피부색의 평균값을 갖는 픽셀이 255값을 갖고, 나머지 픽셀 값들이 255를 중심으로 정규분포를 이루도록 하였다. 이러한 전처리 과정을 통해 Pulse-Coupled Neural Network의 linking coefficient를 보다 쉽게 결정하도록 하였다.

Pulse-Coupled Neural Network를 이용한 얼굴추출 알고리즘 (Face Detection Algorithm Using Pulse-Coupled Neural Network)

  • 임영완;나진희;최진영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.105-107
    • /
    • 2004
  • In this work, we suggested the method which improves the efficiency of the face detection algorithm using Pulse-Coupled Neural Network. Face detection algorithm which uses the color information is independent on size, angle, and obstruction of a face. But the use of color information encounters some problems arising from skin-tone color in the background, intensity variation within faces, and presence of random noise, and so on. Depending on these conditions, we obtained the mean and variance of skin-tone colors by experiments. Then we introduce a preprocess that the pixel with a mean value of skin-tone colors has highest level value(255) and the other pixels in the skin-tone region have values between 0 and 255 according to a normal distribution with a variance. This preprocess leads to an easy decision of the linking parameters.

  • PDF

The Parameter Learning Method for Similar Image Rating Using Pulse Coupled Neural Network

  • Matsushima, Hiroki;Kurokawa, Hiroaki
    • Journal of Multimedia Information System
    • /
    • 제3권4호
    • /
    • pp.155-160
    • /
    • 2016
  • The Pulse Coupled Neural Network (PCNN) is a kind of neural network models that consists of spiking neurons and local connections. The PCNN was originally proposed as a model that can reproduce the synchronous phenomena of the neurons in the cat visual cortex. Recently, the PCNN has been applied to the various image processing applications, e.g., image segmentation, edge detection, pattern recognition, and so on. The method for the image matching using the PCNN had been proposed as one of the valuable applications of the PCNN. In this method, the Genetic Algorithm is applied to the PCNN parameter learning for the image matching. In this study, we propose the method of the similar image rating using the PCNN. In our method, the Genetic Algorithm based method is applied to the parameter learning of the PCNN. We show the performance of our method by simulations. From the simulation results, we evaluate the efficiency and the general versatility of our parameter learning method.

Role of linking parameters in Pulse-Coupled Neural Network for face detection

  • Lim, Young-Wan;Na, Jin-Hee;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1048-1052
    • /
    • 2004
  • In this work, we have investigated a role of linking parameter in Pulse-Coupled Neural Network(PCNN) which is suggested to explain the synchronous activities among neurons in the cat cortex. Then we have found a method to determine the linking parameter for a satisfactory face detection performance in a given color image. Face detection algorithm which uses the color information is independent on pose, size and obstruction of a face. But the use of color information encounters some problems arising from skin-tone color in the background, intensity variation within faces, and presence of random noise and so on. Depending on these conditions, PCNN's linking parameters should be selected an appropriate values. First we obtained the mean and variance of the skin-tone colors by experiments. Then, we introduced a preprocess that the pixel with a mean value of skin-tone colors has the highest level value (255) and the other pixels have values between 0 and 255 according to normal distribution with a variance. This preprocessing leads to an easy decision of the linking parameter of the Pulse-Coupled Neural Network. Through experiments, it is verified that the proposed method can improve the face detection performance compared to the existing methods.

  • PDF

Three Dimensional Segmentation in PCNN

  • Nishi, Naoya;Tanaka, Masaru;Kurita, Takio
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -2
    • /
    • pp.802-805
    • /
    • 2002
  • In the three-dimensional domain image expressed with two-dimensional slice images, such as fMRI images and multi-slice CT images, we propose the three-dimensional domain automatic segmentation for the purpose of extracting region. In this paper, we segmented each domain from the fMRI images of the head of people and monkey. We used the neural network "Pulse-Coupled Neural Network" which is one of the models of visual cortex of the brain based on the knowledge from neurophysiology as the technique. By using this technique, we can segment the region without any learning. Then, we reported the result of division of each domain and extraction to the fMRI slice images of human's head using "three-dimensional Pulse-Coupled Neural Network" which is arranged and created the neuron in the shape of a three-dimensional lattice.

  • PDF

Motion Detection Model Based on PCNN

  • Yoshida, Minoru;Tanaka, Masaru;Kurita, Takio
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -1
    • /
    • pp.273-276
    • /
    • 2002
  • Pulse-Coupled Neural Network (PCNN), which can explain the synchronous burst of neurons in a cat visual cortex, is a fundamental model for the biomimetic vision. The PCNN is a kind of pulse coded neural network models. In order to get deep understanding of the visual information Processing, it is important to simulate the visual system through such biologically plausible neural network model. In this paper, we construct the motion detection model based on the PCNN with the receptive field models of neurons in the lateral geniculate nucleus and the primary visual cortex. Then it is shown that this motion detection model can detect the movements and the direction of motion effectively.

  • PDF

A multisource image fusion method for multimodal pig-body feature detection

  • Zhong, Zhen;Wang, Minjuan;Gao, Wanlin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권11호
    • /
    • pp.4395-4412
    • /
    • 2020
  • The multisource image fusion has become an active topic in the last few years owing to its higher segmentation rate. To enhance the accuracy of multimodal pig-body feature segmentation, a multisource image fusion method was employed. Nevertheless, the conventional multisource image fusion methods can not extract superior contrast and abundant details of fused image. To superior segment shape feature and detect temperature feature, a new multisource image fusion method was presented and entitled as NSST-GF-IPCNN. Firstly, the multisource images were resolved into a range of multiscale and multidirectional subbands by Nonsubsampled Shearlet Transform (NSST). Then, to superior describe fine-scale texture and edge information, even-symmetrical Gabor filter and Improved Pulse Coupled Neural Network (IPCNN) were used to fuse low and high-frequency subbands, respectively. Next, the fused coefficients were reconstructed into a fusion image using inverse NSST. Finally, the shape feature was extracted using automatic threshold algorithm and optimized using morphological operation. Nevertheless, the highest temperature of pig-body was gained in view of segmentation results. Experiments revealed that the presented fusion algorithm was able to realize 2.102-4.066% higher average accuracy rate than the traditional algorithms and also enhanced efficiency.

Discrimination of neutrons and gamma-rays in plastic scintillator based on spiking cortical model

  • Bing-Qi Liu;Hao-Ran Liu;Lan Chang;Yu-Xin Cheng;Zhuo Zuo;Peng Li
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3359-3366
    • /
    • 2023
  • In this study, a spiking cortical model (SCM) based n-g discrimination method is proposed. The SCM-based algorithm is compared with three other methods, namely: (i) the pulse-coupled neural network (PCNN), (ii) the charge comparison, and (iii) the zero-crossing. The objective evaluation criteria used for the comparison are the FoM-value and the time consumption of discrimination. Experimental results demonstrated that our proposed method outperforms the other methods significantly with the highest FoM-value. Specifically, the proposed method exhibits a 34.81% improvement compared with the PCNN, a 50.29% improvement compared with the charge comparison, and a 110.02% improvement compared with the zero-crossing. Additionally, the proposed method features the second-fastest discrimination time, where it is 75.67% faster than the PCNN, 70.65% faster than the charge comparison and 38.4% slower than the zero-crossing. Our study also discusses the role and change pattern of each parameter of the SCM to guide the selection process. It concludes that the SCM's outstanding ability to recognize the dynamic information in the pulse signal, improved accuracy when compared to the PCNN, and better computational complexity enables the SCM to exhibit excellent n-γ discrimination performance while consuming less time.

신경망을 이용한 다중 심리-생체 정보 기반의 부정 감성 분류 (Classification of Negative Emotions based on Arousal Score and Physiological Signals using Neural Network)

  • 김아영;장은혜;손진훈
    • 감성과학
    • /
    • 제21권1호
    • /
    • pp.177-186
    • /
    • 2018
  • 감성은 복잡하고 다양한 요인들에 의해 영향을 받기 때문에 다각적인 측면에서 고려되어야 한다. 본 연구에서는 심리 평가 척도의 하나인 각성(arousal) 지표와 다중 생체신호에서 추출된 생체지표 반응을 이용하여 중립 및 부정 감성(슬픔, 공포, 놀람)의 분류하였다. 이를 위하여 감성에 따른 생체지표 반응의 차이를 확인하였고, 다중 신경망 알고리즘 기반의 감성 인식기를 적용하여 이들 감성이 얼마나 정확하게 분류되는가를 확인하였다. 총 146명의 실험 참가자(평균 연령 $20.1{\pm}4.0$, 남성 41%)를 대상으로 감성 유발 자극을 제시하고 동시에 생체신호(심전도, 혈류맥파, 피부전기활동)를 측정하였다. 또한 감성 유발 자극에 대한 심리 반응을 감성 평가 척도로 평가하였다. 측정된 생체신호에서 심박률(HR), NN 간격의 표준편차(SDNN), 혈류량(BVP), 맥파전달시간(PTT), 피부전도수준(SCL), 피부전도반응(SCR)을 추출하였다. 결과 분석을 위하여 감성 자극에 대한 각성도와 안정 상태와 감성 상태의 생체지표 반응을 활용하였다. 또한 감성 분류를 위하여 다중 신경망 기반의 감성 인식기를 활용하였다. 그 결과, 감성에 따른 생체지표 반응의 차이를 확인하였고, 이들 감성의 분류 성능은 각성도와 모든 생체지표 특징들을 조합하였을 때 정확도가 가장 높음(86.9%)을 확인하였다. 본 연구는 심리 및 생체지표 추출과 기계학습 기술의 적용을 통하여 부정 감성을 분류할 수 있음을 제안하며, 이는 인간의 감성을 탐지하는 감성 인식 기술을 확립하는데 기여할 것으로 예상한다.