• Title/Summary/Keyword: Pulsatile Blood Flow

Search Result 97, Processing Time 0.02 seconds

Multibody Dynamics in Arterial System

  • Shin Sang-Hoon;Park Young-Bae;Rhim Hye-Whon;Yoo Wan-Suk;Park Young-Jae;Park Dae-Hun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.343-349
    • /
    • 2005
  • There are many things in common between hemodynamics in arterial systems and multibody dynamics in mechanical systems. Hemodynamics is concerned with the forces generated by the heart and the resulting motion of blood through the multi-branched vascular system. The conventional hemodynamics model has been intended to show the general behavior of the body arterial system with the frequency domain based linear model. The need for detailed models to analyze the local part like coronary arterial tree and cerebral arterial tree has been required recently. Non-linear analysis techniques are well-developed in multibody dynamics. In this paper, the studies of hemodynamics are summarized from the view of multibody dynamics. Computational algorithms of arterial tree analysis is derived, and proved by experiments on animals. The flow and pressure of each branch are calculated from the measured flow data at the ascending aorta. The simulated results of the carotid artery and the iliac artery show in good accordance with the measured results.

Blood Flow Rate Estimation using Proximal Isovelocity Surface Area Technique Based on Region-Based Contour Scheme and Surface Subdivision Flow Model (영역기반 윤곽선 기법과 표면 분할 유동모델에 기반한 근위 등속 표면적 기법을 이용한 혈류량 추정)

  • Jin, Kyung-Chan;Cho, Jin-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.1
    • /
    • pp.45-52
    • /
    • 2001
  • The proximal isovelocity surface area (PISA) method is an effective way of measuring the regurgitant blood flow rate in the mitral valve. This method defines the modelling required to describe the geometry of the isotach of the PISA. In the normal PISA flow model, the flow rate is calculated assuming that the surface of the isotach is either hemispherical or non-hemispherical numerically. However, this paper evaluated the estimate flow rate using a direct surface subdivision flow model based on the height field after isotach extraction using a region-based scheme. To validate the proposed method, the various PISA flow models were compared using pusatile color Doppler images with flow rates ranging from $30\;cm^3/sec\;to\;60\;cm^3/sec$ flow rate. Whereas the hemispherical flow model had a mean value of $29\;cm^3/sec$ and underestimated the measured flow rate by 35%, the proposed model and non-hemispherical model produced a c;ame mean value of $45\;cm^3/sec$, moreover, both flow models produced a similar pulsatile flow rate.

  • PDF

PREVENTION OF MURAL THROMBUS IN POROUS INNER TUBE OF DOUBLE-LAYERED TUBE BY SALINE PERFUSION (생리식염수의 재료표면에의 분출에 의한 이중튜브의 응혈 방지)

  • Kim, Sung-S.;Park, Joon-B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.11
    • /
    • pp.110-113
    • /
    • 1993
  • An in vitro experiment under laminar non-pulsatile blood flow and an acute canine ex vivo femoral A-V series shunt experiment were undertaken to investigate the effectiveness of saline perfusion through pores of porous tubes to prevent formation of mural thrombus. PS/SBR porous tubes were used for the in vitro experiment. Commercially obtained ePTFE porous tubes were etched by sodium naphthalenide, and the etched tubes were used for the ex vivo experiment. According to the results of the in vitro experiment, mural thrombus on the surface of the porous tribe could be prevented by the saline perfusion. Adhered blood cells decreased semi-logarithmically with increased perfusion rate (up to $0.022\;ml/min-cm^2$) of isotonic saline solution. According to results of the ex vivo experiment, mural thrombus decreased with increased perfusion rate (upto $0.060\;ml/min-cm^2$).

  • PDF

Computational Analysis of Impulse Forces Affecting Coil Compaction in Cerebral Aneurysms

  • Cha Kyung-Se;Balaras Elias
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.3
    • /
    • pp.94-100
    • /
    • 2006
  • The effectiveness of the treatment of intracranial aneurysms with endovascular coiling depends on coil packing density, the location of aneurysm, its neck dimensions with respect to the aneurysm dome, and its size with respect to the surrounding tissue. Clinical data also suggests that the aneurysm neck size is the main predictor of aneurysm recanalization. In this study, the force impinging on the aneurysm neck in an idealized aneurysm was calculated by using a three dimensional finite volume method for the non-Newtonian incompressible laminar flow. To quantify the effect of neck size on the impingement force, calculations were performed for aneurysm neck diameters (Da) varying from 10% to 100% of the parent artery diameter (Dp). Also, maximum impingement forces were represented by a function of the ratio of the aneurysm neck to the diameter of the parent vessel. The results show that the hemodynamic forces exerted on the coil mass at the aneurysm neck due to the pulsatile blood flow are larger for wide necked aneurysms.

Interventional radiography in management of high-flow arteriovenous malformation of maxilla: report of a case

  • Khambete, Neha;Risbud, Mukund;Mehta, Nikit
    • Imaging Science in Dentistry
    • /
    • v.41 no.3
    • /
    • pp.123-128
    • /
    • 2011
  • Arteriovenous malformations are extremely rare conditions in that can result from abnormalities in the structure of blood vessels, which may be potentially fatal. A 30-year-old female patient visited our hospital with a complaint of swelling on the right maxillary posterior gingiva along with the large port-wine stain on right side of face. On clinical examination, the swelling was compressible and pulsatile. Radiographic examination revealed a lytic lesion of maxilla. Diagnostic angiography revealed a high-flow arteriovenous malformation of maxilla which was treated by selective transarterial embolization of maxillary artery using polyvinyl alcohol particles.

Algorithm of Copulsation Estimation for Counterpulsation using Pressure of VAD Outlet Cannula

  • Kang Jung-Soo;Lee Jung-Joo;Jung Min-Woo;Park Yong-Doo;Sun Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.2
    • /
    • pp.78-82
    • /
    • 2006
  • The ventricular assist device(VAD) helps to reduce the overload against the patient's native heart(NH). The pulsatile VAD pumps out the ventricular blood to the aorta with pulsatile flow. If the VAD pulsates simultaneously with the NH, the ventricle of the NH could confronts abnormally elevated aortic pressure, and this could deteriorate the ventricle rather than assist to recover it. Thus counterpulsation algorithms to avoid copulsation have been adopted by many VADs, but these methods utilize electrocardiography or arterial pressure signals, which may have difficulties to acquire consistently for a long period. In this study, the copulsation estimation algorithm for the counterpulsation is developed using the VAD outlet pressure signal. The VAD outlet pressure signal is good to maintain for a long time and the sensor part could be integrated to the VAD as a built-in module. From the VAD outlet pressure signal and its pump rate information calculated with Fast Fourier Transform, pulse peaks by the VAD and the NH were extracted and the next copulsation time at which the VAD and the NH would pulsate simultaneously was estimated. This estimation algorithm was implemented by using PC MATLAB software and tested for various pump rate conditions with mock circulation system. For each condition, the copulsation time was estimated successfully. Consequently, the results showed the possibility to use the outlet cannula pressure signal in the copulsation estimation.

Flow Visualization in Realistic Arterial Bypass Graft Model

  • Singh, Megha;Shin, Se-Hyun
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • Background: Coronary atherosclerosis artery disease is the leading cause of morbidity and mortality. Coronary artery bypass grafting (CABG) which utilizes the saphenous vein graft, has helped in alleviating the suffering of these patients. Newer techniques are being developed to improve upon the techniques. Still there is significant number of failures, leading to re-grafting or re-vascularization. Some studies have helped in identifying the high and low shear stress regions. Further studies based on their realistic models are required. Material, methods and results: we developed the realistic model of fully blocked right coronary with bypass graft placed at angle of $5^0$ with curvature similar to that of artery. Pulsatile flow of birefringent solution through this model by polarized light was visualized. The images of complete flow field in the model were recorded and analyzed. Regions of high flow disturbances which are prone to further changes are identified. Existence of recirculation in the blocked coronary may initiate new blood-tissue interactions deleterious to bypass graft. Conclusion: Our study shows that by selecting the procedure to place bypass graft at minimum angle with curvature similar to that of artery and smooth sutures may improve the life span of the graft. This study also identified that coronary blocked regions contributing by recirculation flow at the proximal and distal regions of bypass which may require further studies.

  • PDF

Evolution of Low Wall-Shear Stress Area in Anterior Communicating Artery Aneurysm (전교통동맥류 내부 유동 전산해석을 통한 낮은 벽면 전단 응력 영역 발달 분석)

  • Guk, Yoonhyeok;Kwon, Taeho;Moon, Seongdeuk;Kim, Dongmin;Hwang, Jinyul;Bae, Youngoh
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.45-54
    • /
    • 2022
  • We analyzed the low wall-shear stress area in the intracranial aneurysm that occurred at an anterior communicating artery with a special emphasis on vortical structures close to the wall. We reconstructed the aneurysm model from patient CTA data. We assumed blood as an incompressible Newtonian fluid and treated the blood vessel as a solid wall. The pulsatile boundary condition was applied at the inlet of the anterior cerebral artery. From the instantaneous flow field, we computed the histogram of the wall-shear stress over the aneurysm wall and found the low wall-shear stress event (< 0.4 Pa). This extreme event was due to the low wall-shear stress area that occurred at the daughter sac. We found that the merging of two vortices induced the low wall-shear stress area; one arises from the morphological characteristics of the daughter sac, and the other is formed by a jet flow into the aneurysm sac. The latter approaches the daughter sac, which ultimately leads to the strong ejection event near the daughter sac.

The Effect of Omega-3 Fatty Acid Supplementation on Cerebral Blood Flow and Vascular Resistance: A Preliminary Study (오메가 3 지방산이 뇌혈류 및 혈관저항에 미치는 영향: 예비연구)

  • Heo, Jae-Hyeok;Won, Hye-Yeon;Im, Dong-Gyu;Kim, Jung-Hee;Kim, Hee-Tae;Ahn, Jin-Young
    • Annals of Clinical Neurophysiology
    • /
    • v.17 no.2
    • /
    • pp.68-72
    • /
    • 2015
  • Background: The effects of omega-3 polyunsaturated fatty acids (PUFAs) on cerebral vessels have not been clarified until now. Thus we investigated the efficacy of omega-3 PUFAs supplementation on cerebral blood flow velocity and vascular resistance via transcranial doppler (TCD). Methods: Consecutive twenty patients (13 male and 7 female) with at least 1 cerebrovascular risk factor or a known cerebrovascular disease were enrolled. Patients were treated with omega-3 PUFAs (1 g, two times per day) for 12 weeks. Cerebral blood flow velocity, resistance index, and pulsatile index were checked before and after 12 weeks of treatment using TCD. Results: The change of resistance index in right MCA (from $0.58{\pm}0.07$ to $0.55{\pm}0.07$, p = 0.042) and left PCA (from $0.56{\pm}0.07$ to $0.53{\pm}0.06$, p = 0.037) showed significant improvement after 12 weeks of omega-3 PUFAs treatment. The changes in other vessels, however, failed to show any significant changes compared to the baseline. Conclusions: Omega-3 PUFAs treatment showed feasible efficacies for cerebral vascular resistances in this open label trial. To confirm these results, larger samples of patients and longer period of follow-up is warranted.

Intraaneurysmal Blood Flow Changes for the Different Coil Locations (코일 위치에 따른 동맥류 내부 혈류유동의 변화)

  • 이계한;정우원
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.295-300
    • /
    • 2004
  • Coil embolization technique has been used recently to treat cerebral aneurysms. When a giant or a multilobular aneurysm are treated by roils, filling an aneurysm sac completely with coils is difficult and partial blocking of an aneurysm sac is inevitable. Blood flow characteristics, which nay affect the embolization process of an aneurysm sac, are changed by the locations of coils for the Partially blocked aneurysms. Blood flow fields are also influenced by the geometry of a parent vessel. In order to suggest the coil locations effective for aneurysm embolization, the blood flow fields of lateral aneurysm models were analyzed for the different coil locations and parent vessel geometries. Three dimensional pulsatile flow fields are analyzed by numerical methods considering non-Newtonian viscosity characteristics of blood. Flow rate into the aneurysm sac (inflow rate) and wall shear stress, which are suspected as flow dynamic factors influencing aneurysm embolization, are also calculated. Inflow rates were smaller and the low wall shear stress zones were larger in the neck blocked models compared to the dome blocked models. Smaller inflow and larger low wall shear stress zones in the distal neck blocked model imply that the distal neck should be the effective coil locations for aneurysm embolization.