• Title/Summary/Keyword: Pull technology

Search Result 440, Processing Time 0.024 seconds

Deformation Characteristics of the Pressurized Grouting Soil Nailing Systems from the Field Pull-out Tests (현장인발시험을 통한 가압 그라우팅 쏘일네일의 변형특성)

  • Chun, Byungsik;Park, Joosuck;Park, Sisam;Jung, Jongju;Kong, Jinyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.61-65
    • /
    • 2008
  • In this study, a newly modified soil nailing technology named as the PGSN (Pressurized Grouting Soil Nailing) system is proposed. Effects of various factors related to the design of the pressurized grouting soil nailing system, such as the length of re-bars and type of reinforcement materials, were examined throughout a series of the displacement-controlled field pull-out tests. 9 displacement-controlled field pull-out tests were performed and the ratio of injected grout volume to grout hole volume were also evaluated based on the measurements. In addition, short-term characteristics of pull-out deformations of the newly proposed PGSN system were analyzed and compared with those of the ordinary soil nailing system by carrying out field pull-out tests. The test results were shown that the displacements of pressurized grouting soil nailing system were decreased 30~36% in comparison with using gravity grouting soil nailing system by the pressurized effect. The displacements of steel tube were diminished 31~32% comparison with using deformed bar by the reinforcement type change from the field pull-out tests.

  • PDF

Current Concept of Biomimicry - Ecological Approach for Sustainable Development - (생태모방의 현재적 개념 - 지속가능한 발전을 위한 생태적 접근 -)

  • Bae, Haejin;Park, Eun Jin;Lee, Eunok
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.1
    • /
    • pp.116-123
    • /
    • 2019
  • This study focused on defining concepts such as biology push (biology-based biomimicry) and technology pull (technology problem-based biomimicry) in the multidisciplinary field of ecological imitation and analyzing the status of related research and technology at the domestic and international levels. From an ecological point of view, biomimicry is defined as ecological mimicry in which ideas obtained through classification and investigation of principles of biology and ecology are applied to the concepts of engineering and technology. We also defined the biology push as the ecological imitation based on biological characteristics starting from an ecological viewpoint and technology pull as the ecological imitation based on technical problems starting from technical needs. Although biomimicry studies often focus on the technology development by finding stable and eco-friendly source materials from biological and ecological characteristics, we wanted to emphasize the unlimited potential of research of biomimicry that can begin with an idea based on biological and ecological characteristics. This study presents the need to develop the research and technology further based on the biological and ecological viewpoints that can contribute to future sustainable development.

An Experimental Study on Bond Strength of Reinforcing Steel in Self-Consolidating Concrete

  • Looney, Trevor J.;Arezoumandi, Mahdi;Volz, Jeffery S.;Myers, John J.
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.3
    • /
    • pp.187-197
    • /
    • 2012
  • An experimental investigation was conducted to compare the bond strength of reinforcing steel in self-consolidating concrete (SCC) with conventional concrete (CC). This study investigated two different compressive strengths of SCC as well as CC. The experimental program consisted of 24 pull-out specimens as well as 12 full-scale beams (three for each concrete type and strength). The pull-out specimens were based on RILEM recommendations, and the beam specimens were tested under a simply supported four-point loading condition. The CC test results served as a control and were used to evaluate the results from the SCC pull-out and beam specimen tests. Furthermore, a comparison was performed between results of this study and a bond database of CC specimens. These comparisons indicate that SCC beams possess comparable or slightly greater bond strength than CC beams.

Response of square anchor plates embedded in reinforced soft clay subjected to cyclic loading

  • Biradar, Jagdish;Banerjee, Subhadeep;Shankar, Ravi;Ghosh, Poulami;Mukherjee, Sibapriya;Fatahi, Behzad
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.165-173
    • /
    • 2019
  • Plate anchors are generally used for structures like transmission towers, mooring systems etc. where the uplift and lateral forces are expected to be predominant. The capacity of anchor plate can be increased by the use of geosynthetics without altering the size of plates. Numerical simulations have been carried out on three different sizes of square anchor plates. A single layer geosynthetic has been used as reinforcement in the analysis and placed at three different positions from the plate. The effects of various parameters like embedment ratio, position of reinforcement, width of reinforcement, frequency and loading amplitude on the pull out capacity have been presented in this study. The load-displacement behaviour of anchors for various embedment ratios with and without reinforcement has been also observed. The pull out load, corresponding to a displacement equal to each of the considered maximum amplitudes of a given frequency, has been expressed in terms of a dimensionless breakout factor. The pull out load for all anchors has been found to increase by more than 100% with embedment ratio varying from 1 to 6. Finally a semi empirical formulation for breakout factor for square anchors in reinforced soil has also been proposed by carrying out regression analysis on the data obtained from numerical simulations.

Switching Intention of Smart Appliance : A Perspective of the Push-Pull-Mooring Framework (스마트 가전의 전환의도에 영향을 미치는 요인에 관한 연구 : Push-Pull-Mooring의 관점)

  • Park, HyunSun;Kim, Sanghyun
    • Journal of Digital Convergence
    • /
    • v.16 no.2
    • /
    • pp.127-137
    • /
    • 2018
  • As the next generation technology, leading 4th industrial revolution has been progressed, the goods and services converged by the technology are being released in a market. The smart appliances among them attracts users' attentions as a key promising industry. Thus, this study investigates the factors that influence switching intention to smart appliances based on Push-Pull-Mooring framework. We collected 217 survey responses and formed structural equation modeling with AMOS 22.0. The results show that functional deprivation, money deprivation, alternative attractiveness had an effect on the switching intention to smart appliances. In addition, low switching cost is related to the relationship between external variables and switching intention. The results expect to provide useful information to the smart appliance-related companies.

Experimental Study on Pull-out Strength of Glued-in Rods Connection according to Adhesive (접착제에 따른 Glued-in Rod 접합부 인발성능에 관한 실험 연구)

  • Park, Keum-Sung;Oh, Keunyeong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.2
    • /
    • pp.149-160
    • /
    • 2022
  • In this study, a pull-out test considering the adhesive type, embedded length, and direction of re-bar was conducted to evaluate the pull-out performance of glued-in rod joints using timber and adhesive produced in Korea. In the test, the specimens using liquid adhesive showed better pull-out performance, and the longer the embedded length of the re-bar, the higher the maximum tensile load by inducing the yield of the re-bar first. Through the test results, a glued-in rod joints design, which is advantageous to design the adhesive strength stronger than the yield strength of re-bar, was proposed, and a correction factor of 0.75 for the adhesive strength considering construction error was also suggested.

Design and Realization of a Digital PV Simulator with a Push-Pull Forward Circuit

  • Zhang, Jike;Wang, Shengtie;Wang, Zhihe;Tian, Lixin
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.444-457
    • /
    • 2014
  • This paper presents the design and realization of a digital PV simulator with a Push-Pull Forward (PPF) circuit based on the principle of modular hardware and configurable software. A PPF circuit is chosen as the main circuit to restrain the magnetic biasing of the core for a DC-DC converter and to reduce the spike of the turn-off voltage across every switch. Control and I/O interface based on a personal computer (PC) and multifunction data acquisition card, can conveniently achieve the data acquisition and configuration of the control algorithm and interface due to the abundant software resources of computers. In addition, the control program developed in Matlab/Simulink can conveniently construct and adjust both the models and parameters. It can also run in real-time under the external mode of Simulink by loading the modules of the Real-Time Windows Target. The mathematic models of the Push-Pull Forward circuit and the digital PV simulator are established in this paper by the state-space averaging method. The pole-zero cancellation technique is employed and then its controller parameters are systematically designed based on the performance analysis of the root loci of the closed current loop with $k_i$ and $R_L$ as variables. A fuzzy PI controller based on the Takagi-Sugeno fuzzy model is applied to regulate the controller parameters self-adaptively according to the change of $R_L$ and the operating point of the PV simulator to match the controller parameters with $R_L$. The stationary and dynamic performances of the PV simulator are tested by experiments, and the experimental results show that the PV simulator has the merits of a wide effective working range, high steady-state accuracy and good dynamic performances.

A Bidirectional Three-phase Push-pull Zero-Voltage Switching DC-DC Converter (양방향 3상 푸쉬풀 ZVS DC-DC 컨버터)

  • Kwon, Min-Ho;Han, Kook-In;Park, Jung-Sung;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.403-411
    • /
    • 2013
  • This paper proposes an isolated bidirectional three-phase push-pull dc-dc converter for high power application such as eco-friendly vehicles, renewable energy systems, energy storage systems, and solid-state transformers. The proposed converter achieves ZVS turn-on of all switches and volume of passive components is small by an effect of three-phase interleaving. The proposed converter has identical switching pattern for both boost and buck mode, and therefore can provide seamless characteristic at the mode transition. A 3kW prototype of the proposed converter has been built and tested to verify the validity of the proposed operation.

Bond properties of steel and sand-coated GFRP bars in Alkali activated cement concrete

  • Tekle, Biruk Hailu;Cui, Yifei;Khennane, Amar
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.123-131
    • /
    • 2020
  • The bond performance of glass fibre reinforced polymer (GFRP) bars and that of steel bars embedded in Alkali Activated Cement (AAC) concrete are analysed and compared using pull-out specimens. The bond failure modes, the average bond strength and the free end bond stress-slip curves are used for comparison. Tepfers' concrete ring model is used to further analyse the splitting failure in ribbed steel bar and GFRP bar specimens. The angle the bond forces make with the bar axis was calculated and used for comparing bond behaviour of ribbed steel bar and GFRP bars in AAC concrete. The results showed that bond failure mode plays a significant role in the comparison of the average bond stress of the specimens at failure. In case of pull-out failure mode, specimens with ribbed steel bars showed a higher bond strength while specimens with GFRP bars showed a higher bond stress in case of splitting failure mode. Comparison of the bond stress-slip curves of ribbed steel bars and GFRP bars depicted that the constant bond stress region at the peak is much smaller in case of GFRP bars than ribbed steel bars indicating a basic bond mechanism difference in GFRP and ribbed steel bars.

A Current-Fed Parallel Resonant Push-Pull Inverter with a New Cascaded Coil Flux Control for Induction Heating Applications

  • Namadmalan, Alireza;Moghani, Javad Shokrollahi;Milimonfare, Jafar
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.632-638
    • /
    • 2011
  • This paper presents a cascaded coil flux control based on a Current Source Parallel Resonant Push-Pull Inverter (CSPRPI) for Induction Heating (IH) applications. The most important problems associated with current source parallel resonant inverters are start-up problems and the variable response of IH systems under load variations. This paper proposes a simple cascaded control method to increase an IH system's robustness to load variations. The proposed IH has been analyzed in both the steady state and the transient state. Based on this method, the resonant frequency is tracked using Phase Locked Loop (PLL) circuits using a Multiplier Phase Detector (MPD) to achieve ZVS under the transient condition. A laboratory prototype was built with an operating frequency of 57-59 kHz and a rated power of 300 W. Simulation and experimental results verify the validity of the proposed power control method and the PLL dynamics.