• Title/Summary/Keyword: Public-key algorithm

Search Result 249, Processing Time 0.027 seconds

A Study on the Contents Security Management Model for Multi-platform Users

  • Joo, Hansol;Shin, Seung-Jung
    • International journal of advanced smart convergence
    • /
    • v.10 no.2
    • /
    • pp.10-14
    • /
    • 2021
  • Today people adopt various contents from their mobile devices which lead to numerous platforms. As technology of 5G, IOT, and smart phone develops, the number of people who create, edit, collect, and share their own videos, photos, and articles continues to increase. As more contents are shared online, the numbers of data being stolen continue to increase too. To prevent these cases, an authentication method is needed to encrypt the content and prove it as its own content. In the report, we propose a few methods to secure various misused content with secondary security. A unique private key is designed when people create new contents through sending photos or videos to platforms. The primary security is to encrypt the "Private Key" with a public key algorithm, making its data-specific "Timeset" that doesn't allow third-party users to enter. For the secondary security, we propose to use Message Authentication Codes(MACs) to certify that we have produced the content.

Mobile Banking Systems Using Personal Digital Assistants (PDA를 이용한 모바일 뱅킹 시스템)

  • An, Geon-Ho;Yang, Su-Cheol;Chu, Yeong-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.143-146
    • /
    • 2003
  • In mobile Internet banking service through wireless local area network, security is a most important factor to consider. We describe the development of mobile banking service using Personal Digatal Assistant (PDA). In order to increase the strength of encryption, we adopted hybrid approach where both of the public key algorithm and the secret key algorithm are used during the transaction among PDA, banking server and authentication server.

  • PDF

Study of Modular Multiplication Methods for Embedded Processors

  • Seo, Hwajeong;Kim, Howon
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.3
    • /
    • pp.145-153
    • /
    • 2014
  • The improvements of embedded processors make future technologies including wireless sensor network and internet of things feasible. These applications firstly gather information from target field through wireless network. However, this networking process is highly vulnerable to malicious attacks including eavesdropping and forgery. In order to ensure secure and robust networking, information should be kept in secret with cryptography. Well known approach is public key cryptography and this algorithm consists of finite field arithmetic. There are many works considering high speed finite field arithmetic. One of the famous approach is Montgomery multiplication. In this study, we investigated Montgomery multiplication for public key cryptography on embedded microprocessors. This paper includes helpful information on Montgomery multiplication implementation methods and techniques for various target devices including 8-bit and 16-bit microprocessors. Further, we expect that the results reported in this paper will become part of a reference book for advanced Montgomery multiplication methods for future researchers.

A Study on the Performance Evaluation of Elliptic Curve Cryptography based on a Real Number Field (실수체 기반 타원곡선 암호의 성능 평가에 관한 연구)

  • Woo, Chan-Il;Goo, Eun-Hee;Lee, Seung-Dae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1439-1444
    • /
    • 2013
  • Recently, as the use of the applications like online banking and stock trading is increasing by the rapid development of the network, security of data content is becoming more and more important. Accordingly, public key or symmetric key encryption algorithm is widely used in open networks such as the internet for the protection of data. Generally, public key cryptographic systems is based on two famous number theoretic problems namely factoring or discrete logarithm problem. So, public key cryptographic systems is relatively slow compared to symmetric key cryptography systems. Among public key cryptographic systems, the advantage of ECC compared to RSA is that it offers equal security for a far smaller key. For this reason, ECC is faster than RSA. In this paper, we propose a efficient key generation method for elliptic curve cryptography system based on the real number field.

Proposal for Analog Signature Scheme Based on RSA Digital Signature Algorithm and Phase-shifting Digital Holography

  • Gil, Sang Keun
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.483-499
    • /
    • 2020
  • In this paper, a novel analog signature scheme is proposed by modifying an RSA-based digital signature scheme with optical phase-shifting digital holography. The purpose of the proposed method is generating an analog signature to provide data confidentiality and security during the data transfer, compared to the digital signature. The holographic encryption technique applied to a hash value reveals an analog-type of pseudo-random pattern in the analog signature scheme. The public key and secret key needed to verify the analog signature are computed from public key ciphers which are generated by the same holographic encryption. The proposed analog signature scheme contains a kind of double encryption in the process of generating signature and key, which enhances security level more than the digital signature. The results of performance simulations show the feasibility of the highly secure signature scheme, and security analysis shows high robustness against known-message attacks and chosen-message attacks. In addition, the proposed method can apply to one-time signature schemes which can be used to sign only one message and it can also apply to authentication, e-mails, electronic banking and electronic data interchange.

Efficient Public Key Broadcast Encryption System (효율적인 공개키 기반의 디지털 콘텐츠 전송 시스템)

  • Lee, Moon-Shik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.635-641
    • /
    • 2010
  • In this paper, we propose an efficient public key broadcast encryption system which can also extend traitor trace and revoke system. Although the proposed system has limited collusion size, the ciphertext size in the system can be sublinear in the number of total users, the private key size is constant, the computational cost can be sublinear and it can support black-box tracing algorithm, therefore, our system can be an option to applications where reducing the ciphertext size, private key size is a top priority. Furthermore, we can also apply our system to military document broadcast system, because it has such an efficient measurement.

Public Key Cryptosystem Based on Jordan Form (Jordan 형식을 이용한 공개키 암호체계)

  • Lee, Hee-Jung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.4
    • /
    • pp.101-105
    • /
    • 2005
  • Recently a new public key cryptosystem based on a diagonal matrix has been proposed by Zheng. This system uses eigenvalues as a long-term key and random numbers as session key generators. However, there are a couple of flaws in that system. In this paper, we propose a new algorithm in which those flaws are all fixed. Our scheme is based on modular equations over a composite and uses a matrix of Jordan form. We also analyze the security of it.

Proxy Signatures based on XTR Cryptosystem (XTR 암호 시스템 기반의 대리 서명)

  • 이재욱;전동호;최영근;김순자
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.3
    • /
    • pp.111-117
    • /
    • 2003
  • The XTR public key system has advantage of short key length and fast computing speed. So, the XTR is used usefully in complicated operation. In this paper, we propose a new algorithm of double exponentiation operation and a proxy signature protocol based on the XTR. The double exponentiation operation should be executed to apply XTR for the proxy signature protocol. But this algorithm is inappropriate, because two secret key has to be blown in existent operation algorithm. New algorithm enable double exponentiation operation with proxy signer's secret key and public information. And the XTR is used to generation and verification of proxy at proxy signature protocol. Therefore proxy signature based on the XTR has basic advantage of the XTR. These advantage can be used in internet as well as mobile.

Scalable RSA public-key cryptography processor based on CIOS Montgomery modular multiplication Algorithm (CIOS 몽고메리 모듈러 곱셈 알고리즘 기반 Scalable RSA 공개키 암호 프로세서)

  • Cho, Wook-Lae;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.100-108
    • /
    • 2018
  • This paper describes a design of scalable RSA public-key cryptography processor supporting four key lengths of 512/1,024/2,048/3,072 bits. The modular multiplier that is a core arithmetic block for RSA crypto-system was designed with 32-bit datapath, which is based on the CIOS (Coarsely Integrated Operand Scanning) Montgomery modular multiplication algorithm. The modular exponentiation was implemented by using L-R binary exponentiation algorithm. The scalable RSA crypto-processor was verified by FPGA implementation using Virtex-5 device, and it takes 456,051/3,496347/26,011,947/88,112,770 clock cycles for RSA computation for the key lengths of 512/1,024/2,048/3,072 bits. The RSA crypto-processor synthesized with a $0.18{\mu}m$ CMOS cell library occupies 10,672 gate equivalent (GE) and a memory bank of $6{\times}3,072$ bits. The estimated maximum clock frequency is 147 MHz, and the RSA decryption takes 3.1/23.8/177/599.4 msec for key lengths of 512/1,024/2,048/3,072 bits.

Incorporating RSA with a New Symmetric-Key Encryption Algorithm to Produce a Hybrid Encryption System

  • Prakash Kuppuswamy;Saeed QY Al Khalidi;Nithya Rekha Sivakumar
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.196-204
    • /
    • 2024
  • The security of data and information using encryption algorithms is becoming increasingly important in today's world of digital data transmission over unsecured wired and wireless communication channels. Hybrid encryption techniques combine both symmetric and asymmetric encryption methods and provide more security than public or private key encryption models. Currently, there are many techniques on the market that use a combination of cryptographic algorithms and claim to provide higher data security. Many hybrid algorithms have failed to satisfy customers in securing data and cannot prevent all types of security threats. To improve the security of digital data, it is essential to develop novel and resilient security systems as it is inevitable in the digital era. The proposed hybrid algorithm is a combination of the well-known RSA algorithm and a simple symmetric key (SSK) algorithm. The aim of this study is to develop a better encryption method using RSA and a newly proposed symmetric SSK algorithm. We believe that the proposed hybrid cryptographic algorithm provides more security and privacy.