• 제목/요약/키워드: PtM catalyst

검색결과 117건 처리시간 0.02초

MEMS 공정을 이용한 마이크로 액체 추력기 배열체 제작 (Fabrication of a liquid microthruster array by MEMS manufacturing process)

  • 허정무;권세진
    • 항공우주시스템공학회지
    • /
    • 제9권2호
    • /
    • pp.13-18
    • /
    • 2015
  • Micro planar type liquid propellant thruster was fabricated by MEMS manufacturing process for micro/nano satellites applications. 90 wt.% hydrogen peroxide was used as propellant and for propellant decomposition, Pt/Al2O3 was used as catalyst. Micro thruster structure was made by 5 photosensitive glasses patterned with thruster component profiles. Objective thrust was 50 mN and required hydrogen peroxide mass flow was 2.1 ml/min, which was supplied by syringe pump and teflon tube in experimental test. Performance test said that average steady thrust was approximately 30 mN, around 60% of objective thrust, and transient time was about 5 sec. It is estimated that extended response time was due to high thermal energy loss of micro scale thruster and low enthalpy input by propellant mass flow.

PAFC용 전극제작방법의 개선에 의한 전극구조 및 전극특성 연구 (A Study on Electrode Structure and Characteristics of Electrode by Development of Fabrication Method of Electrode used in PAFCs)

  • 심재철;안상현;유덕영;이주성
    • 공업화학
    • /
    • 제9권1호
    • /
    • pp.89-93
    • /
    • 1998
  • 인산형 연료전지의 전극 성능 향상을 위해 전극제조방법을 개선하여 전극을 제조한 후 그 특성을 살펴보았다. 기존의 제조방법에서는 촉매의 활성을 잃어버리는 백금이 존재하기 때문에 전극의 성능이 감소하는 단점이 있어서 전극제조방법을 개선하여 백금 촉매의 이용률을 증가시키는 시도를 하였다. 먼저 PTFE/C slurry와 Pt/C powder를 각각 만든 후에 그것들을 혼합하여 PTFE/C(6/4):Pt/C(1/9)의 비율을 각각 4:6, 5:5, 6:4, 7:3, 8:2, 9:1로 전극을만들어 전극 성능을 비교하였다. PTFE/C(6/4):Pt/C(1/9)를 5:5의 비율로 만든 경우의 성능이 0.7V에서 $310mA/cm^2$ 로 가장 우수하였다.

  • PDF

산성용액에서 전해액 조성에 따른 아연공기 이차전지의 성능변화 (Characterization for Performance of Zn-Air Recharegeable Batteries on Different Composition in Acidic Electrolyte)

  • 대관하;노립신;심중표;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제32권5호
    • /
    • pp.401-409
    • /
    • 2021
  • The combination of different concentrations of ZnSO4 in acidic solution as electrolyte in Zn-air batteries was investigated by Zn symmetrical cell test, half-cell and full cell tests. Using 1 M ZnSO4 + 0.05 M H2SO4 as electrolyte and MnO2 as air cathode catalyst with Zn foil anode, this combination had a satisfactory performance with balance of electrochemical activity and stability. Its electrochemical activity was matched to or even better than the PtRu catalyst in different current density. And its cycle life was improved (more than 100 cycles stable) by suppressing the growth of zinc dendrites on anode obviously. This electrolyte overcame the shortcomings of alkaline electrolyte that are easy to react with CO2 in the air, severely growth of Zn dendrites caused by uneven plating/stripping of Zn.

직접메탄올 연료전지용 표면처리된 중형기공 탄소지지체에 담지된 백금-루테늄 촉매의 전기화학적 거동 (Electrochemical Behaviors of Pt-Ru Catalysts on the Surface Treated Mesoporous Carbon Supports for Direct Methanol Fuel Cells)

  • 김병주;서민강;최경은;박수진
    • 공업화학
    • /
    • 제22권2호
    • /
    • pp.167-172
    • /
    • 2011
  • 본 연구에서는 중형기공 탄소(MCs)를 표면처리하여, 표면 관능기를 분석하고, 표면처리 효과를 조사하였다. 직접 메탄올 연료전지의 탄소지지체로 중형기공 실리카(SBA-15)를 이용한 전통적인 주형합성법을 이용하여 중형기공 탄소(MCs)를 합성하였다. 중형기공 탄소는 인산의 농도를 각각 0, 1, 3, 4, 및 5 M로 달리하여, 343 K에서 6 h 동안 처리하였다. 그리고 표면처리된 중형기공 탄소(H-MCs)에 화학적 환원방법을 이용하여 백금과 루테늄을 담지하였다. 표면처리된 탄소지지체에 담지된 백금-루테늄 촉매의 특성을 확인하기 위해 비표면적 측정장치(BET), X-선 회절분석법(XRD), X-선 광전자 분광법(XPS), 투과전자현미경(TEM), 유도결합 플라즈마 질량분석기(ICP-MS)를 이용하였다. 또한, 백금-루테늄 촉매의 전기화학적인 특성을 순환전류전압 실험으로 분석하였다. 표면분석의 결과로부터, 산소를 포함한 화학관능기가 탄소지지체에 도입된 사실을 알 수 있었다. 결론적으로, 4 M의 인산으로 표면처리한 H4M-MCs가 백금-루테늄의 균일한 분산과 함께 전기적인 촉매의 성능을 향상시키는 것을 확인할 수 있었다.

PEMFC Operation Connected with Methanol Reformer System

  • Lee, Jung-Hyun;Park, Sang-Sun;Shul, Yong-Gun;Park, Jong-Man;Kim, Dong-Hyun;Kim, Ha-Suck;Yoo, Seung-Eul
    • Carbon letters
    • /
    • 제9권4호
    • /
    • pp.303-307
    • /
    • 2008
  • The studies on integrated operation of fuel cell with fuel processor are very essential prior to its commercialization. In this study, Polymer Electrolyte Membrane Fuel Cell (PEMFC) was operated with a fuel processor, which is mainly composed of two parts, methanol steam reforming reaction and preferential oxidation (PROX). In fuel processor, ICI 33-5 (CuO 50%, ZnO 33%, $Al_2O_3$ 8%, BET surface area: $66\;m^2g^{-1}$) catalyst and CuO-$CeO_2$ catalyst were used for methanol steam reforming, preferential oxidation (PROX) respectively. PEMFC was operated by hydrogen fuel generated from fuel processor. The resulting gas from PROX reactor is used to operate PEMFC equipped with our prepared anode and cathode catalyst. PtRu/C catalyst gives more tolerance to CO.

촉매 연소기에서 희박 예혼합기의 연소특성 (Combustion Characteristics of Lean Premixed Mixture in Catalytic Combustors)

  • 서용석;강성규;신현동
    • 대한기계학회논문집B
    • /
    • 제22권12호
    • /
    • pp.1681-1690
    • /
    • 1998
  • The aim of this paper is to investigate combustion characteristics of lean premixed mixture stabilized by catalytic surface reaction. The catalytic combustor consisted of a catalyst bed and a thermal combustor. The catalyst bed was made of two stage, Pd catalyst in the first stage and Pt catalyst in the second stage. Auto ignition of lean mixture took place in the thermal combustor. Ignition temperature was about $810{\sim}820^{\circ}C$ at the fuel-air ratio of 1.5~3.0 % and the mixture velocity of 11~18m/sec. The position of flame front in the thermal combustor moved toward back as preheat temperature increased and fuel-air ratio decreased. The f1ame supported by surface reaction was stabilized without any flame stabilizers. NOx emissions from the catalytic combustor were below 2.0 ppm ($O_2$ 15 %) when gas temperature was limited below $1350^{\circ}C$. This result demonstrates that NOx emission from the catalytic combustor is much low comparing with conventional combustors.

Synthesis and Properties of Novel Pt(II)-containing Polyphosphazenes

  • 백형기;정옥상;성용길;손윤수
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권11호
    • /
    • pp.1074-1079
    • /
    • 1995
  • Poly(dichlorophosphazene) having low molecular weight (M&bar;w∼104) was synthesized by the thermal reaction of hexachlorocyclotriphosphazene in the presence of excess AlCl3 (>2%) as catalyst. Using the poly(dichlorophosphazene), poly[bis(ethylglycino)phosphazene], poly[bis(glycinemethylamido)phosphazene], and poly[(glycinemethylamido)(methylamino)phosphazene] were prepared. Diammineplatinum(Ⅱ) complex cation was introduced into these derivatized phosphazene polymers, and the resultant polymers containing the platinum(Ⅱ) moiety were charaterized by means of elemental analysis, IR and NMR spectroscopies, and then subjected to in vitro and in vivo assays of antitumor activity.

Determination of Trace Anions in Concentrated Hydrogen Peroxide by Direct Injection Ion Chromatography with Conductivity Detection after Pt-Catalyzed On-Line Decomposition

  • 김도희;이보경;이동수
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권6호
    • /
    • pp.696-700
    • /
    • 1999
  • A method has been developed for the determination of trace anion impurities in concentrated hydrogen peroxide. The method involves on-line decomposition of hydrogen peroxide, ion chromatographic separation and subsequent suppressed-type conductivity detection. H2O2 is decomposed in Pt-catalyst filled Gore-Tex membrane tubing and the resulting aqueous solution containing analytes is introduced to the injection valve of an ion chromatograph for periodic determinations. The oxygen gas evolving within the membrane tubing escapes freely through the membrane wall causing no problem in ion chromatographic analysis. Decomposition efficiency is above 99.99% at a flow rate of 0.4mL/min for a 30% hydrogen peroxide concentration. Analytes are quantitatively retained. The analysis results for several brands of commercial hydrogen peroxides are reported.

방향족 유기용매의 촉매산화공정에서 이성분계 혼합물의 속도특성 예측 (Kinetics Prediction of Binary Aromatic Solvent Mixtures in Catalytic Oxidation Process)

  • 이승범;윤용수;홍인권;이재동
    • 환경위생공학
    • /
    • 제16권1호
    • /
    • pp.66-71
    • /
    • 2001
  • The objective of this study was to depict the kinetic behavior of the platinum catalyst for the deep oxidation of aromatic solvents and their binary mixtures. The oxidation kinetics of aromatic solvents, which were benzene, toluene and m-xylene, was studied on a 0.5% $Pt/{\gamma}-Al_2O_3$ catalyst. Deep oxidation of binary mixtures, which were 1:1 in volume, was carried out and the inlet concentration was controlled in the range of 133 and 333ppmv. An approach based on the two-stage redox model was used to analysis the results. The deep oxidation conversion of aromatic solvents was inversely proportional to inlet concentration in plug flow reactor. This trend is due to the zeroth-order kinetics with respect to inlet concentration. The kinetic parameters of multicomponent model were independently evaluated from the single compound oxidation experiments. A simple multicomponent model based on two-stage redox rate model made reasonably good predictions of conversion over the range of parameters studied.

  • PDF

세라믹 멤브레인 활용 직접 에탄올 연료전지 (Direct Ethanol Fuel Cell (DEFC) Fabricated with Ceramic Membrane)

  • 정재근;윤영훈
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.419-424
    • /
    • 2014
  • Direct ethanol fuel cell has been fabricated with ceramic membrane. A porous silicon carbide (SiC) membrane having approximately 30% porosity has been applied for a direct ethanol proton exchange membrane (DE-PEM) fuel cell. A horizontal type cell having Pt ($18mg/cm^2$) catalyst layer on both side of the ceramic membrane was used for the demonstration test. The ethanol oxidation based-fuel cell stack showed very high voltage (1.289V) and measurable current level (68mA) even though at room temperature.