• Title/Summary/Keyword: PtCo/C catalyst

Search Result 96, Processing Time 0.023 seconds

Evaluation of possibility using cobalt poly-pyrrole carbon as an alternative oxygen reduction catalyst in microbial fuel cells (미생물 연료전지 내 Cobalt poly-pyrrole carbon의 산소환원촉매로서의 평가)

  • Kwon, Jae-Hyeong;Joo, Jin-Chul;Ahn, Chang-Hyuk;Song, Ho-Myeon;Ahn, Ho-Sang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.477-477
    • /
    • 2012
  • 미생물 연료전지는 정부가 추진하고 있는 신성장 동력사업의 녹색성장 정책에 부합하는 환경융합 신기술로써 일상생활에서 배출되는 하 폐수와 같은 유기물질을 전자공여체로 이용하여 전기에너지를 생산 할 수 있다는 점에서 각광받고 있다. 미생물 연료전지는 산화전극부의 미생물이 공급된 유기물질 을 분해하여 전자와 수소이온을 생성시키며 이들은 산소가 존재하는 환원전극부로 이동하여 물로 환원 됨 으로써 전기를 생성한다. 전기 화학적 성능의 향상을 위해 미생물 연료전지에서는 환원전극부에 서의 산소와 전자 및 수소이온의 빠른 환원반응을 유도해 주는 Pt촉매를 이용한다. 하지만 고가의 Pt 촉매는 미생물 연료전지의 현장적용을 위한 규모확장 시 초기비용이 증가되는 문제점을 초래한다. 이에 미생물 연료전지의 대체촉매 개발에 대한 많은 연구가 진행되고 있다. 화학적 연료전지에 관한 논문에서 연료전지의 촉매로 산소 환원반응에 높은 성능을 보이는 Co-N/C 형태의 Cobalt poly-pyrrole carbon가 제시 되었다. 이는 가격적인 측면에서는 Pt촉매의 약1/10배 정도 수준이지만 셀 성능은 Pt촉매의 95%정도의 효율을 보인다는 측면에서 향후 Pt 대체촉매로 가능성을 보여주는 새로운 비금속 촉매물질이다. Cobalt poly-pyrrole carbon이 Pt-catalsyt 셀 전압 성능 대비 약 66 %의 효율을 보였고 내부저항과 최대전력 밀도에 있어서도 촉매를 사용하지 않은 경우와 비금속 촉매의 성능보다 높음을 알 수 있었다. 본 연구는 Pt-catalsyt를 대체할 수 있는 저가의 산소환원 촉매물질 발굴을 위해 미생물연료전지에서 사용된 전례가 없으며 현재 화학전지의 촉매로 널리 쓰이고 있는 Cobalt poly-pyrrole carbon의 산소환원 촉매로써의 이용가능성을 평가하기 위해 실시되었으며, 평가한 결과는 첫 번째로 Cobalt poly-pyrrole carbon을 사용한 경우가 촉매를 사용하지 않은 경우와 비금속 촉매보다 환원 전극부에서의 원활한 환원작용이 진행되고 있음을 추측할 수 있으며 Pt-catalyst와 비교하였을 때 성능 대비 저렴한 가격으로 가격 경쟁력에 있어서 우월하다고 판단되었고 두 번째로 전기화학적 성능평가 및 EIS를 이용한 환원전극부의 내부저항 평가를 실시한 결과 셀 전압에 있어서 가장 많은 도말량 ($2.0mg/cm^2$)이 높은 성능을 보이고 있음을 알 수 있었다.

  • PDF

Recent Developments of Metal-N-C Catalysts Toward Oxygen Reduction Reaction for Anion Exchange Membrane Fuel Cell: A Review

  • Jong Gyeong Kim;Youngin Cho;Chanho Pak
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.207-219
    • /
    • 2024
  • Metal-N-C (MNC) catalysts have been anticipated as promising candidates for oxygen reduction reaction (ORR) to achieve low-cost polymer electrolyte membrane fuel cells. The structure of the M-Nx moiety enabled a high catalytic activity that was not observed in previously reported transition metal nanoparticle-based catalysts. Despite progress in non-precious metal catalysts, the low density of active sites of MNCs, which resulted in lower single-cell performance than Pt/C, needs to be resolved for practical application. This review focused on the recent studies and methodologies aimed to overcome these limitations and develop an inexpensive catalyst with excellent activity and durability in an alkaline environment. It included the possibility of non-precious metals as active materials for ORR catalysts, starting from Co phthalocyanine as ORR catalyst and the development of methodologies (e.g., metal-coordinated N-containing polymers, metal-organic frameworks) to form active sites, M-Nx moieties. Thereafter, the motivation, procedures, and progress of the latest research on the design of catalyst morphology for improved mass transport ability and active site engineering that allowed the promoted ORR kinetics were discussed.

Catalytic Properties of the Cobalt Silicides for a Dye-Sensitized Solar Cell (염료감응형 태양전지용 코발트실리사이드들의 촉매 물성)

  • Kim, Kwangbae;Noh, Yunyoung;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.26 no.8
    • /
    • pp.401-405
    • /
    • 2016
  • The cobalt silicides were investigated for employment as a catalytic layer for a DSSC. Using an E-gun evaporation process, we prepared a sample of 100 nm-thick cobalt on a p-type Si (100) wafer. To form cobalt silicides, the samples were annealed at temperatures of $300^{\circ}C$, $500^{\circ}C$, and $700^{\circ}C$ for 30 minutes in a vacuum. Four-point probe, XRD, FE-SEM, and CV analyses were used to determine the sheet resistance, phase, microstructure, and catalytic activity of the cobalt silicides. To confirm the corrosion stability, we also checked the microstructure change of the cobalt silicides after dipping into iodide electrolyte. Through the sheet resistance and XRD results, we determined that $Co_2Si$, CoSi, and $CoSi_2$ were formed successfully by annealing at $300^{\circ}C$, $500^{\circ}C$, and $700^{\circ}C$, respectively. The microstructure analysis results showed that all the cobalt silicides were formed uniformly, and CoSi and $CoSi_2$ layers were very stable even after dipping in the iodide electrolyte. The CV result showed that CoSi and $CoSi_2$ exhibit catalytic activities 67 % and 54 % that of Pt. Our results for $Co_2Si$, CoSi, and $CoSi_2$ revealed that CoSi and $CoSi_2$ could be employed as catalyst for a DSSC.

Catalytic Mechanism for Growth of Carbon Nanotubes under CO-H2 Gas Mixture

  • Chung, Uoo-Chang;Kim, Yong-Hwan;Lee, Deok-Bo;Jeong, Yeon-Uk;Chung, Won-Sub;Cho, Young-Rae;Park, Ik-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.103-106
    • /
    • 2005
  • In order to investigate the catalytic mechanism for the growth of carbon nanotubes (CNTs), a comprehensive study was conducted using carbon materials synthesized at 680 ${^{\circ}C}$ with a gas mixture of CO-H$_2$ after reduction at 800 ${^{\circ}C}$ by H$_2$ gas from iron oxide, and metal Pt. The resulting material was observed by scanning electron microscopy (SEM) and X-ray diffraction patterns (XRD) after a variety of reaction times. The carbon materials synthesized by metal Pt were little affected by reaction time and the sintered particles did not form CNTs. Xray analysis revealed that metal Fe was completely converted to iron carbide (Fe$_3$C) without Fe peaks in the early stage. After 5 min, iron carbide (Fe$_3$C) and carbon (C) phases were observed at the beginning of CNTs growth. It was found that the intensity of the carbon(C) peak gradually increased with the continuous growth of CNTs as reaction time increases. It was also found that the catalyst of growth of CNTs was metal carbide.

The Catalytic Reduction of Carbon Dioxide by Butane over Nickel loaded Catalysts (니켈담지촉매상에서 부탄에 의한 이산화탄소의 환원반응)

  • Yoon, Cho-Hee;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.543-549
    • /
    • 1997
  • The direct reaction of carbon dioxide($CO_2$) with butane($C_4H_{10}$) to obtain synthesis gas and hydrocarbon compounds have been studied on nickel loaded catalysts. In the reaction of $CO_2$ with $C_4H_{10}$, Ni loaded catalysts showed similar activity with Pt catalyst and Coke deposition on the catalyst was severe by dehydrogenation of butane. The main products were carbon monoxide and hydrogen, when alumina and Y type zeolite were used as a support. Instead, a great deal of aromatic hydrocarbons were obtained on the Ni loaded ZSM-5 catalyst. The conversion of $CO_2$ increased with the increasing molar ratio of $CO_2$/$C_4H_{10}$ on Ni/ZSM-5, Ni/NaY and Ni/alumina catalyst, but the conversion decreased again from the ratio of 2. The value of $CO_2$ conversion was the highest at the 5wt% of Ni loading on ZSM-5 catalyst. A part of cokes deposited on the catalysts diminished when only $CO_2$ gas or water steam flowed into the reactor. The coke deposited on the catalysts was very reactive and it may be an important intermediate for the carbon dioxide reforming reaction.

  • PDF

Effects of Changes in Accelerated Degradation Conditions for Catalyst Supports in Polymer Electrolyte Fuel Cell (고분자전해질 연료전지(PEMFC)에서 촉매 지지체 가속 열화 조건 변화의 영향)

  • Sohyeong Oh;Yuhan Han;Donggeun Yoo;Myoung Hwan Kim;Ji Young Park;Youngjin Choi;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.7-12
    • /
    • 2024
  • The durability of the catalyst support has a significant effect on the durability of proton exchange membrane fuel cells (PEMFC). The accelerated durability evaluation of the catalyst support is performed at a high voltage (1.0 to 1.5 V), and the catalyst and ionomer binder in the catalyst layer are also deteriorated, hindering the evaluation of the durability of the support. The existing protocol (DOE protocol) was improved to find conditions in which the support, which is a durability evaluation target, deteriorates further. A protocol (MDOE) was developed in which the relative humidity was lowered by 35% and the number of voltage changes was reduced. After repeating the 1.0 ↔ 1.5 V voltage change cycle, the catalyst mass activitiy (MA), electrochemical active area (ECSA), electrical double layer capacity (DLC), Pt dissolution and particle growth were analyzed. Reaching 40% reduction in mass activity, the MDOE protocol took only 500 cycles, reducing the number of voltage changes compared to the DOE method and increasing the degradation of the carbon support by 50% compared to the DOE protocol.

Decomposition of Aromatic Organic Solvents with Catalytic Oxidation in SC-CO2 (초임계 이산화탄소내 촉매산화분해에 의한 방향족 유기용매의 분해특성)

  • Lee, Seung Bum;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.624-628
    • /
    • 1998
  • The aromatic organic solvents(BTX) were decomposed in the fixed bed reactor packed with a 0.5% $Pt/{\gamma}-Al_2O_3$ catalyst, then, supercritical carbon dioxide(SC-$CO_2$) was used as the reaction media. And the conversion was dependent on the inlet concentration of BTX and the molar density of SC-$CO_2$. The conversion of BTX was decreased with increasing of inlet concentration, and was increased with temperature and pressure. The maximum conversion of benzene was 98.5% at $300^{\circ}C$ and 204.1 atm, and that of toluene and xylene were 82.0 and 76.5%, respectively, at $350^{\circ}C$ and 204.1 atm. The intermediate products of partial oxidation were identified as benzaldehyde, phenol, benzenemethanol, and so on. The BTX can be effectively converted into harmless $CO_2$ and $H_2O$ at appropriate operating condition. Thus, the nontoxic recovery process was suggested as the removal method of BTX.

  • PDF

High Alloying Degree of Carbon Supported Pt-Ru Alloy Nanoparticles Applying Anhydrous Ethanol as a Solvent

  • Choi, Kwang-Hyun;Lee, Kug-Seung;Jeon, Tae-Yeol;Park, Hee-Young;Jung, Nam-Gee;Chung, Young-Hoon;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • Alloying degree is an important structural factor of PtRu catalysts for direct methanol fuel cells (DMFC). In this work, carbon supported PtRu catalysts were synthesized by reduction method using anhydrous ethanol as a solvent and $NaBH_4$ as a reducing agent. Using anhydrous ethanol as a solvent resulted in high alloying degree and good dispersion. The morphological structure and crystallanity of synthesized catalysts were characterized by X-ray diffraction (XRD), high resolution transmission electron microscope (HR-TEM). CO stripping and methanol oxidation reaction were measured. Due to high alloying degree catalyst prepared in anhydrous ethanol, exhibited low onset potential for methanol oxidation and negative peak shift of CO oxidation than commercial sample. Consequently, samples, applying ethanol as a solvent, exhibited not only enhanced CO oxidation, but also increased methanol oxidation reaction (MOR) activity compared with commercial PtRu/C (40 wt%, E-tek) and 40 wt% PtRu/C prepared in water solution.

The Effect of $MnO_2$ Addition on the $V_2O_5/TiO_2$ Catalytic Filters for NO Reduction (NO 환원반응을 위한 $V_2O_5/TiO_2$계 촉매필터의 $MnO_2$ 조촉매 효과)

  • Shin, Hae-Joong;Choi, Jae-Ho;Song, Young-Hwan;Lee, Ju-Young;Jang, Sung-Cheol;Choi, Joo-Hong
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.363-368
    • /
    • 2008
  • Nitrogen oxides (NO, $NO_2$ and $N_2O$) have been controlled effectively by the SCR catalysts coated on monolith or honeycomb in commercial sites with ammonia as reductant at high temperature range $300{\sim}400^{\circ}C$. However, the catalytic filter has much merit on the point of controlling the particles and nitrogen oxides simultaneously. It will be more advanced-system if the catalytic working temperature is reduced to the normal filtration temperature of under $200^{\circ}C$. This study has focus on the development of the catalytic filter working at the low temperature. So the additive effect of the components such as Pt and Mn (which are known the catalytic component of $V_2O_5/TiO_2$ was investigated. The $V_2O_5-WO_3$ catalytic filter exhibited high activity and selectivity at $250{\sim}320^{\circ}C$ showing more than 95% NO conversion for the treatment of 600 ppm NO at face velocity 2 cm/s. The Pt-$V_2O_5-WO_3$ catalytic filter shifted the optimum working temperature towards the lower temperature ($170{\sim}200^{\circ}C$). And NO conversion was 100% and higher than that of $V_2O_5-WO_3$ catalyst at $250{\sim}320^{\circ}C$. The $MnO_X-V_2O_5-WO_3$ catalytic filter showed the wide temperature range of $220{\sim}330^{\circ}C$ for more than 95% NO conversion. This is a remarkable advantage when considered the $MnO_X$ catalytic filter presents the maximum activity at $150{\sim}250^{\circ}C$ and $V_2O_5-WO_3$ catalytic filter shows the maximum activity at $250{\sim}320^{\circ}C$.

  • PDF

A Study on the Optimum Design for LTCC Micro-Reformer: Design and performance evalution of monolith fuel reformer/PROX (LTCC를 소재로 하는 마이크로 리포머의 최적 설계에 관한 연구 ; 일체형 Reformer/PROX 반응기의 설계 및 성능평가)

  • Chung, C.H.;Oh, J.H.;Jang, J.H.;Jeong, M.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.10a
    • /
    • pp.615-616
    • /
    • 2006
  • A micro-fuel processor system integrating steam reformer and partial oxidation reactor was manufactured using low temperature cofired ceramic (LTCC). A CuO/ZnO/$Al_2O_3$ catalyst and Pt-based catalyst prepared by wet impregnation were used for steam reforming and partial oxidation, respectively. The performance of the LTCC micro-fuel processor was measured at various operating conditions such as the effect of the feed flow rate, the ratio of $H_2O/CH_3OH$, and the operating temperature on the LTCC reformer and CO clean-up system. The catalyst layer was loaded with "Fill and Dry" coating for small volume. The product gas was composed of $70\sim75%$ hydrogen, $20\sim25%$ carbon dioxide, and $1\sim2%$ carbon monoxide at $250\sim300^{\circ}C$, respectively.

  • PDF