• Title/Summary/Keyword: Pt nanoparticle

Search Result 80, Processing Time 0.022 seconds

Preparation of MEA with $TiO_2$ catalysts for Self-humidifying PEMFC ($TiO_2$ 촉매를 첨가한 자가 가습 연료전지용 MEA의 제조)

  • Byun, Jung-Yeon;Lee, Yong-Jin;Ju, Min-Cheol;Kim, Hwa-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.568-571
    • /
    • 2008
  • A novel self-humidifying composite membrane for the proton exchange membrane fuel cell (PEMFC) at low humidity condition was developed. The Pt/$TiO_2$ catalyst particles were synthesized via supercritical impregnation methods. Pt precursor was dissolved in supercritical carbon dioxide and impregnated onto $TiO_2$ particles. Pt precursors were platinum(II) acetylacetonate, Dimethyl(1,5-cyclooctadiene) platinum(II) and we controlled the ratio of Pt to $TiO_2$. The impregnated Pt precursor was converted to $TiO_2$ supported Pt nanoparticle under various reducing conditions. Pt/$TiO_2$ catalyst particles were dispersed uniformly into the Nafion solution, and then Pt/$TiO_2$/Nafion composite membrane was prepared using solution-cast method. The self-humidifying composite membrane could minimize membrane conductivity loss under dry conditions due to the presence of catalyst and hydrophilic Pt/$TiO_2$ particles. To optimize the performance of MEA, amount of ionomer loading was controlled. And mixed catalysts were used. The cell performance of MEA was obviously improved under dry conditions at $65^{\circ}C$.

  • PDF

Preparation of $Pt/TiO_2/Nafion$ Electrolyte Membrane for Self-humidifying membrane of PEMFC (연료전지의 자가 가습 $Pt/TiO_2/Nafion$ 전해질막의 제조)

  • Byun, Jung-Yeon;Kim, Hyo-Won;Ju, Min-Cheol;Kim, Hwang-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.201-204
    • /
    • 2007
  • A novel self-humidifying composite membrane for the proton exchange membrane fuel cell (PEMFC) at low humidity condition was developed. The $Pt/TiO_2 catalyst particles were synthesized via supercritical impregnation methods. Pt precursor was dissolved in supercritical carbon dioxide and impregnated onto $TiO_2$ particles. Pt precursors were platinum(II) acetylacetonate, Dimethyl(1,5-cyclooctadiene) platinum(II) and we controlled the ratio of Pt to $TiO_2$ The impregnated Pt precursor was converted to $TiO_2$ supported Pt nanoparticle under various reducing conditions. $TiO_2$ catalyst particles were dispersed uniformly into the Nafion solution, and then $Pt/TiO_2/Nafion$composite membrane was prepared using solution-cast method. The size, dispersion and content of the platinum had been characterized with Transmission Electron Micrograph (TEM), X-ray diffract ion (XRD) and Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES). The cell performance with the self-humidifying composite membrane was compared with a recast Nafion membrane under both humidified and dry conditions at 65 $^{\circ}C$.

  • PDF

Carbon-Supported Ordered Pt-Ti Alloy Nanoparticles as Durable Oxygen Reduction Reaction Electrocatalyst for Polymer Electrolyte Membrane Fuel Cells

  • Park, Hee-Young;Jeon, Tae-Yeol;Lee, Kug-Seung;Yoo, Sung Jong;Sung, Young-Eun;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.269-276
    • /
    • 2016
  • Carbon-supported ordered Pt-Ti alloy nanoparticles were prepared as a durable and efficient oxygen reduction reaction (ORR) electrocatalyst for polymer electrolyte membrane fuel cells (PEMFCs) via wet chemical reduction of Pt and Ti precursors with heat treatment at $800^{\circ}C$. X-ray diffraction analysis confirmed that the prepared electrocatalysts with Ti precursor molar compositions of 40% (PtTi40) and 25% (PtTi25) had ordered $Pt_3Ti$ and $Pt_8Ti$ structures, respectively. Comparison of the ORR polarization before and after 1500 electrochemical cycles between 0.6 and 1.1 V showed little change in the ORR polarization curve of the electrocatalysts, demonstrating the high stability of the PtTi40 and PtTi25 alloys. Under the same conditions, commercial carbon-supported Pt nanoparticle electrocatalysts exhibited a negative potential shift (10 mV) in the ORR polarization curve after electrochemical cycling, indicating degradation of the ORR activity.

High Electrochemical Activity of Pt-Cu Alloy Support on Carbon for Oxygen Reduction Reaction (산소 환원 반응을 위한 탄소기반 Pt-Cu 합금의 높은 전기적 촉매 활성)

  • KIM, HAN SEUL;RYU, SU CHAK;LEE, YOUNG WOOK;SHIN, TAE HO
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.6
    • /
    • pp.549-555
    • /
    • 2019
  • Electrocatalysis of oxygen reduction reaction (ORR) using Pt nanoparticles or bimetal on carabon was studied. Currently, the best catalyst is platinum, which is a limited resource and expensive to commercialize. In this paper, we investigated the cheaper and more active electrocatalysts by making Pt nanoparticles and adding 3D transition metal such as copper. Electrocatalysts were obtained by chemical reduction based on ethylene glycol solutions. Elemental analysis and particle size were confirmed by XRD and TEM. The electrochemical surface area (ECSA) and activity of the catalyst were determined by electrochemical techniques such as cyclic voltammetry and linear sweep voltammetry method. The commercialized Pt support on carbon (Pt/C, JM), synthesis Pt/C and synthesis Pt3Cu1 alloy nanoparticles supported on carbon were compared. We confirmed that the synthesized Pt3-Cu1/C has high electrochemical performance than commercial Pt/C. It is expected to develop an electrocatalyst with high activity at low price by increasing the oxygen reduction reaction rate of the fuel cell.

Propylene Hydrogenation over Cubic Pt Nanoparticles Deposited on Alumina

  • Yoo, Jung-Whan;Lee, Sung-Min;Kim, Hyung-Tae;El-Sayed, M.A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.843-846
    • /
    • 2004
  • Pt nanoparticles loaded on alumina through an impregnation at room temperature was prepared using $K_2PtCl_4$ and acrylic acid as capping material. Transmission electron microscopy showed that the deposited Pt particles indicate ca. 80% cubic shapes with a narrow distribution of 8-10 nm in size. Propylene hydrogenation over the catalyst has been carried out to evaluate their catalytic performance by the values of activation energy. It is determined from the initial rate, reaction order, and rate constant and is found to be $9.7{\pm}0.5$ kcal/mol. This value has been discussed by comparing to those of encapsulated- and truncated octahedral Pt nanoparticles deposited on alumina, respectively, to study influence of the particle size and shape, and capping material used on the activation energy.

Photocatalytic Systems of Pt Nanoparticles and Molecular Co Complexes for NADH Regeneration and Enzyme-coupled CO2 Conversion

  • Kim, Ellen;Jeon, Minkyung;Kim, Soojin;Yadav, Paras Nath;Jeong, Kwang-Duk;Kim, Jinheung
    • Rapid Communication in Photoscience
    • /
    • v.2 no.2
    • /
    • pp.42-45
    • /
    • 2013
  • Natural photosynthesis utilizes solar energy to convert carbon dioxide and water to energy-rich carbohydrates. Substantial use of sunlight to meet world energy demands requires energy storage in useful fuels via chemical bonds because sunlight is intermittent. Artificial photosynthesis research focuses the fundamental natural process to design solar energy conversion systems. Nicotinamide adenine dinucleotide ($NAD^+$) and $NADP^+$ are ubiquitous as electron transporters in biological systems. Enzymatic, chemical, and electrochemical methods have been reported for NADH regeneration. As photochemical systems, visible light-driven catalytic activity of NADH regeneration was carried out using platinum nanoparticles, molecular rhodium and cobalt complexes in the presence of triethanolamine as a sacrificial electron donor. Pt nanoparticles showed photochemical NADH regeneration activity without additional visible light collector molecules, demonstrating that both photoactivating and catalytic activities exist together in Pt nanoparticles. The NADH regeneration of the Pt nanoparticle system was not interfered with the reduction of $O_2$. Molecular cobalt complexes containing dimethylglyoxime ligands also transfer their hydrides to $NAD^+$ with photoactivation of eosin Y in the presence of TEOA. In this photocatalytic reaction, the $NAD^+$ reduction process competed with a proton reduction.

Fabrication of Pt-MWNT/Nafion Electrodes by Low-Temperature Decal Transfer Technique for Amperometric Hydrogen Detection

  • Rashid, Muhammad;Jun, Tae-Sun;Kim, Yong Shin
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.18-25
    • /
    • 2014
  • A Pt nanoparticle-decorated multiwall carbon nanotube (Pt-MWNT) electrode was prepared on Nafion by a hot-pressing at relatively low temperature. This electrode exhibited an intricate entangled, nanoporous structure as a result of gathering highly anisotropic Pt-MWNTs. Individual Pt nanoparticles were confirmed to have a polycrystalline face-centered cubic structure with an average crystal size of around 3.5 nm. From the cyclic voltammograms for hydrogen redox reactions, the Pt-MWNT electrode was found to have a similar electrochemical behavior to polycrystalline Pt, and a specific electrochemical surface area of $2170cm^2mg^{-1}$. Upon exposure to hydrogen analyte, the Pt-MWNT/Nafion electrode demon-strated a very high sensitivity of $3.60{\mu}A\;ppm^{-1}$ and an excellent linear response over the concentration range of 100-1000 ppm. Moreover, this electrode was also evaluated in terms of response and recovery times, reproducibility, and long-term stability. Obtained results revealed good sensing performance in hydrogen detection.

Synthesis of Pt/alloy Nanoparticles by Electrical Wire Explosion in Liquid Media and its Characteristics (액중 전기선 폭발 공정을 이용한 Pt/alloy 하이브리드 나노입자의 제조 및 그 특성)

  • Koo, Hye Young;Yun, Jung-Yeul;Yang, Sangsun;Lee, Hye-Moon
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.83-88
    • /
    • 2012
  • The electrical wire explosion process in liquid media is promising for nano-sized metal and/or alloy particles. The hybrid Pt/Fe-Cr-Al and Pt/Ni-Cr-Fe nanoparticles for exhaust emission control system are synthesized by electrical wire explosion process in liquid media. The alloy powders have spherical shape and nanometer size. According to the wire component, while Pt/Fe-Cr-Al nanoparticles are shown the well dispersed Pt on the Fe-Cr-Al core particle, Pt/Ni-Cr-Fe nanoparticles are shown the partially separated Pt on the Ni-Cr-Fe core particle. Morphologies and component of two kinds of hybrid nano catalyst particles were characterized by transmission electron microscope and energy dispersive X-ray spectroscopy analysis.

ZnO Nanoparticle Based Dye-Sensitized Solar Cells Devices Fabricated Utilizing Hydropolymer at Low Temperature (저온에서 Hydropolymer를 이용한 ZnO 나노입자 염료 감응형 태양전지)

  • Kwon, Byoung-Wook;Son, Dong-Ick;Park, Dong-Hee;Yang, Jeong-Do;Choi, Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.483-487
    • /
    • 2010
  • To fabricate $TiO_2$ nanoparticle-based dye sensitized solar cells (DSSCs) at a low-temperature, DSSCs were fabricated using hydropolymer and ZnO nanoparticles composites for the electron transport layer around a low-temperature ($200^{\circ}C$). ZnO nanoparticle with 20 nm and 60 nm diameter were used and Pt was deposited as a counter electrode on ITO/glass using an RF magnetron sputtering. We investigate the effect of ZnO nanoparticle concentration in hydropolymer and ZnO nanoparticle solution on the photoconversion performance of the low temperature fabricated ($200^{\circ}C$) DSSCs. Using cis-bis(isothiocyanato)bis(2,20 bipyridy1-4,40 dicarboxylato) ruthenium (II) bis-tetrabutylammonium (N719) dye as a sensitizer, the corresponding device performance and photo-physical characteristics are investigated through conventional physical characterization techniques. The effect of thickness of the ZnO photoelectrode and the morphology of the ZnO nanoparticles with the variations of hydropolymer to ZnO ratio on the photoconversion performance are also investigated. The morphology of the ZnO layer after sintering was examined using a field emission scanning electron microscope (FE-SEM). 60 nm ZnO nanoparticle DSSCs showed an incident photon-to-current conversion efficiency (IPCE) value of about 7% higher than that of 20 nm ZnO nanoparticle DSSCs. The maximum parameters of the short circuit current density ($J_{sc}$), the open circuit potential ($V_{oc}$), fill factor (ff), and efficiency ($\eta$) in the 60 nm ZnO nanoparticle-based DSSC devices were 4.93 mA/$cm^2$, 0.56V, 0.40, and 1.12%, respectively.

Prediction of Atomic Configuration in Binary Nanoparticles by Genetic Algorithm (유전알고리즘을 이용한 이원계 나노입자의 원자배열 예측)

  • Oh, Jung-Soo;Ryou, Won-Ryong;Lee, Seung-Cheol;Choi, Jung-Hae
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.493-498
    • /
    • 2011
  • Optimal atomic configurations in a nanoparticle were predicted by genetic algorithm. A truncated octahedron with a fixed composition of 1 : 1 was investigated as a model system. A Python code for genetic algorithm linked with a molecular dynamics method was developed. Various operators were implemented to accelerate the optimization of atomic configuration for a given composition and a given morphology of a nanoparticle. The combination of random mix as a crossover operator and total_inversion as a mutation operator showed the most stable structure within the shortest calculation time. Pt-Ag core-shell structure was predicted as the most stable structure for a nanoparticle of approximately 4 nm in diameter. The calculation results in this study led to successful prediction of the atomic configuration of nanoparticle, the size of which is comparable to that of practical nanoparticls for the application to the nanocatalyst.