DOI QR코드

DOI QR Code

Propylene Hydrogenation over Cubic Pt Nanoparticles Deposited on Alumina

  • Yoo, Jung-Whan (Material Team, Whiteware${\cdot}$Structural Ceramics Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Sung-Min (Material Team, Whiteware${\cdot}$Structural Ceramics Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Hyung-Tae (Material Team, Whiteware${\cdot}$Structural Ceramics Center, Korea Institute of Ceramic Engineering & Technology) ;
  • El-Sayed, M.A. (School of Chemistry, Georgia Institute of Technology)
  • Published : 2004.06.20

Abstract

Pt nanoparticles loaded on alumina through an impregnation at room temperature was prepared using $K_2PtCl_4$ and acrylic acid as capping material. Transmission electron microscopy showed that the deposited Pt particles indicate ca. 80% cubic shapes with a narrow distribution of 8-10 nm in size. Propylene hydrogenation over the catalyst has been carried out to evaluate their catalytic performance by the values of activation energy. It is determined from the initial rate, reaction order, and rate constant and is found to be $9.7{\pm}0.5$ kcal/mol. This value has been discussed by comparing to those of encapsulated- and truncated octahedral Pt nanoparticles deposited on alumina, respectively, to study influence of the particle size and shape, and capping material used on the activation energy.

Keywords

References

  1. Brus, L. IEEE J. of Quantum Electron 1986, 22, 1909. https://doi.org/10.1109/JQE.1986.1073184
  2. Weller, H. Adv. Mater. 1993, 5, 88. https://doi.org/10.1002/adma.19930050204
  3. Bonnemann, H.; Brown, G. A. Chem. Eur. J. 1997, 3, 1200. https://doi.org/10.1002/chem.19970030805
  4. Yonezawa, T.; Sutoh, M.; Kunitake, T. Chem. Lett. 1997, 619.
  5. Brust, M.; Bethell, D.; Schiffrin, D. J.; Kiely, C. Adv. Mater. 1995,7, 795. https://doi.org/10.1002/adma.19950070907
  6. Ricard, D.; Roussignol, P.; Flyzanis, C. Opt. Lett. 1985, 10, 511. https://doi.org/10.1364/OL.10.000511
  7. Hwang, C.-B.; Fu, Y.-S.; Lu, Y.-L.; Jang, S.-W.; Chou, P.-T.;Wang, C. R.; Yu, S. J. J. Catal. 2000, 195, 336. https://doi.org/10.1006/jcat.2000.2992
  8. Chen, C.-W.; Serizawa, T.; Akashi, M. Chem. Mater. 1999, 11,1381. https://doi.org/10.1021/cm9900047
  9. Ahmadi, T. S.; Wang, Z. L.; Henglein, A.; El-Sayed, M. A. Chem.Mater. 1996, 8, 1161. https://doi.org/10.1021/cm9601190
  10. Englisch, M.; Jentys, A.; Lercher, J. A. J. Catal. 1997, 166, 25. https://doi.org/10.1006/jcat.1997.1494
  11. Rampino, L. D.; Nord, F. F. J. Am. Chem. Soc. 1942, 63, 2745. https://doi.org/10.1021/ja01855a070
  12. Henglein, A.; Ershov, B. G.; Malow, M. J. Phys. Chem. 1995, 99,14129. https://doi.org/10.1021/j100038a053
  13. Cocco, G.; Campostrini, R.; Cabras, M. A.; Carturan, G. J. Mol.Catal. 1994, 94, 299. https://doi.org/10.1016/0304-5102(94)00130-8
  14. Otero-Schipper, P. H.; Wachter, W. A.; Butt, J. B.; Burwell, R. L.;Cohen, J. B. J. Catal. 1977, 50, 494. https://doi.org/10.1016/0021-9517(77)90061-6
  15. Yoo, J. W.; Hathcock, D.; El-Sayed, M. A. J. Phys. Chem. A 2002,106, 2049. https://doi.org/10.1021/jp0121318
  16. Yoo, J. W.; Hathcock, D.; El-Sayed, M. A. J. Catal. 2003, 214,1. https://doi.org/10.1016/S0021-9517(02)00136-7
  17. Wang, Z. L.; Ahmad, T. S.; El-Sayed, M. A. Surf. Sci. 1997, 380,302. https://doi.org/10.1016/S0039-6028(97)05180-7

Cited by

  1. Nanoparticles in a Mesoporous Core/Shell Silica Microsphere and Their Catalytic Activity vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3712
  2. Shape-Controlled Nanostructures in Heterogeneous Catalysis vol.6, pp.10, 2013, https://doi.org/10.1002/cssc.201300398
  3. Fourier Transform Raman Studies of Methyl Red Adsorbed on γ-Alumina and Silica-Alumina vol.25, pp.12, 2004, https://doi.org/10.5012/bkcs.2004.25.12.1817
  4. Thermally Robust Porous Bimetallic (NixPt1-x) Alloy Mesocrystals within Carbon Framework: High-Performance Catalysts for Oxygen Reduction and Hydrogenation Reactions vol.11, pp.24, 2004, https://doi.org/10.1021/acsami.8b21661