DOI QR코드

DOI QR Code

Molecular Dynamics Simulations on β Amyloid Peptide (25-35) in Aqueous Trifluoroethanol Solution

  • Lee, Sang-Won (Department of Chemistry and Department of Advanced Fusion Technoloyg, Konkuk University) ;
  • Kim, Yang-Mee (Department of Chemistry and Department of Advanced Fusion Technoloyg, Konkuk University)
  • Published : 2004.06.20

Abstract

Amyloid peptide (A${\beta}$) is the major component of senile plaques found in the brain of patient of Alzheimer's disease. ${\beta}$-amyloid peptide (25-35) (A${\beta}$25-35) is biologically active fragment of A${\beta}$. The three-dimensional structure of A${\beta}$25-35 in aqueous solution with 50% (vol/vol) TFE determined by NMR spectroscopy previously adopts an ${\alpha}$-helical conformation from $Ala^{30}$ to $Met^{35}$. It has been proposed that A${\beta}$(25-35) exhibits pH- and concentration-dependent ${\alpha}-helix{\leftrightarrow}{\beta}$sheet transition. This conformational transition with concomitant peptide aggregation is a possible mechanism of plaque formation. Here, in order to gain more insight into the mechanism of ${\alpha}$-helix formation of A${\beta}$25-35 peptide by TFE, which particularly stabilizes ${\alpha}$-helical conformation, we studied the secondary-structural elements of A${\beta}$25-35 peptide by molecular dynamics simulations. Secondary structural elements determined from NMR spectroscopy in aqueous TFE solution are preserved during the MD simulation. TFE/water mixed solvent has reduced capacity for forming hydrogen bond to the peptide compared to pure water solvent. TFE allows A${\beta}$25-35 to form bifurcated hydrogen bonds to TFE as well as to residues in peptide itself. MD simulation in this study supports the notion that TFE can act as an ${\alpha}$-helical structure forming solvent.

Keywords

References

  1. Chromy, B. A.; Nowak, R. J.; Lambert, M. P.; Viola, K. L.; Chang,L.; Velasco, P. T.; Jone's, B. W.; Fernandez, S. J.; Laco'r, P. N.;Horowitz, P.; Finch, C. E.; Krafft, G. A.; Klein, W. L.Biochemistry 2003, 42, 12749. https://doi.org/10.1021/bi030029q
  2. Hardy, J. A.; Higgins, J. A. Science 1992, 256, 184. https://doi.org/10.1126/science.1566067
  3. Hardy, J. A. Proc. Natl. Acad. Sci. USA 1997, 94, 2095. https://doi.org/10.1073/pnas.94.6.2095
  4. Chiti, F.; Stefani, M.; Taddei, N.; Ramponi, G.; Dobson, C. M.Nature 2003, 424, 805. https://doi.org/10.1038/nature01891
  5. Hirschfield, G. M.; Hawkins, P. N. Int. J. Biochem. Cell Biol.2003, 35, 1608. https://doi.org/10.1016/S1357-2725(03)00169-9
  6. Kang, J.; Lemaire, H. G.; Unterbeck, A.; Salbaum, M. N.;Masters, C. L.; Grzeschik, K. H.; Multhaup, G.; Beyreuther, K.;Mueller-Hill, B. Nature 1987, 325, 733. https://doi.org/10.1038/325733a0
  7. Selkoe, D. J. Trends. Neurosci. 1993, 16, 403. https://doi.org/10.1016/0166-2236(93)90008-A
  8. Fraser, P. E.; Nguyen, J. T.; Surewicz, W. K.; Kirschner, D. A.Biophys. J. 1991, 60, 1190. https://doi.org/10.1016/S0006-3495(91)82154-3
  9. Mattson, M. P.; Cheng, B.; Davis, D.; Bryant, K.; Lieberburg, I.;Rydel, R. E. J. Neurosci. 1992, 12, 376.
  10. Pike, C. J.; Burdick, D.; Walencewicz, A. J.; Glabe, C. G.;Cotman, C. W. J. Neurosci. 1993, 13, 1676.
  11. Pike, C. J.; Walencewicz, A. J.; Kosmoski, J.; Cribbs, D. H.;Glabe, C. G.; Cotman, C. W. J. Neurochem. 1995, 64, 253.
  12. Yankner, B. A.; Duffy, L. K.; Kirschner, D. A. Science 1990, 250,279. https://doi.org/10.1126/science.2218531
  13. Lee, S.; Suh, Y.-H.; Kim, S.; Kim, Y. J. Biomol. Struct. Dyn. 1999,17, 381. https://doi.org/10.1080/07391102.1999.10508369
  14. Srinivasan, R.; Jones, E. M.; Liu, K.; Ghiso, J.; Marchant, R. E.;Zagorski, M. G. J. Mol. Biol. 2003, 333(5), 1003. https://doi.org/10.1016/j.jmb.2003.09.001
  15. Bond, J. P.; Deverin, S. P.; Inouye, H.; El-Agnaf, O. M.; Teeter, M.M.; Kirschner, D. A. J. Struct. Biol. 2003, 141, 156. https://doi.org/10.1016/S1047-8477(02)00625-1
  16. Talafous, J.; Marcinowski, K. J.; Klopman, G.; Zagorski, M. G.Biochemistry 1994, 33, 7788. https://doi.org/10.1021/bi00191a006
  17. Sorimachi, K.; Craik, D. J. Eur. J. Biochem. 1994, 219, 237. https://doi.org/10.1111/j.1432-1033.1994.tb19935.x
  18. Lee, J. P.; Stimson, E. R.; Ghilardi, J. R.; Mantyh, P. W.; Lu, Y.;Felix, A. M.; Llanos, W.; Behbin, A.; Cummings, M.; Criekinge,M. V.; Timms, W.; Maggio, J. E. Biochemistry 1995, 34,5191. https://doi.org/10.1021/bi00015a033
  19. Kohno, T.; Kobayashi, K.; Maeda, T.; Sato, K.; Takashima, A.Biochemistry 1996, 35, 16094. https://doi.org/10.1021/bi961598j
  20. Terzi, E.; Holzemann, G.; Seelig, J. Biochemistry 1994, 33, 1345. https://doi.org/10.1021/bi00172a009
  21. Terzi, E.; Holzemann, G.; Seelig, J. Biochemistry 1994, 33, 7434. https://doi.org/10.1021/bi00189a051
  22. Lin, S. Y.; Chu, H. L. Int. J. Biol. Macromol. 2003, 32, 173. https://doi.org/10.1016/S0141-8130(03)00051-5
  23. Ding, F.; Borreguero, J. M.; Buldyrey, S. V.; Stanley, H. E.;Dokholyan, N. V. Proteins 2003, 53(2), 220. https://doi.org/10.1002/prot.10468
  24. Otvos, Jr., L.; Szendrei, G. J.; Lee, J. M.; Mantsch, H. H. Eur. J.Biochem. 1993, 211, 249. https://doi.org/10.1111/j.1432-1033.1993.tb19893.x
  25. Hollosi, M.; Otvos, Jr., L.; Kajtar, J.; Perczel, A.; Lee, V. M.Peptide Res. 1989, 2, 109.
  26. Halverson, K.; Fraser, P. E.; Kirschner, D. A.; Lansbury, Jr., P. T.Biochemistry 1990, 29, 2639. https://doi.org/10.1021/bi00463a003
  27. Soto, C.; Castano, E. M.; Frangione, B. F.; Inestrosa, N. C. J. Biol. Chem. 1995, 270, 3063. https://doi.org/10.1074/jbc.270.7.3063
  28. Molecular Simulation Inc.: San Diego, CA.
  29. Cheong, Y.; Shim, G.; Kang, D.; Kim, Y. J. Mol. Struct. 1999,475, 219. https://doi.org/10.1016/S0022-2860(98)00511-0
  30. Shim, G.; Lee, S.; Kim, Y. Bull. of Korean Chem. Soc. 1997, 18,415.
  31. Shim, G.; Shin, J.; Kim, Y. Bull. of Korean Chem. Soc. 2004, 25,198. https://doi.org/10.5012/bkcs.2004.25.2.198
  32. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. D.;Klein, M. L. J. Chem. Phys. 1989, 79, 926. https://doi.org/10.1063/1.445869
  33. Jois, S. D.; Hughes, R.; Siahaan, T. J. Biomol. Struct. Dyn. 1999,17(3), 429. https://doi.org/10.1080/07391102.1999.10508375
  34. Van Buuren, A. R.; Berendsen, H. J. C. Biopolymers 1993, 33,1159. https://doi.org/10.1002/bip.360330802
  35. Loof, H. D.; Nilsson, L.; Rigler, R. J. Am. Chem. Soc. 1992, 114,4028. https://doi.org/10.1021/ja00037a002
  36. Sticht, H.; Willbold, D.; Rosch, P. J. Biomol. Struct. Dyn. 1994,12(1), 19. https://doi.org/10.1080/07391102.1994.10508086
  37. Van Gunsteren, W. F.; Berendsen, H. J. C. Mol. Phys. 1977, 34,1311. https://doi.org/10.1080/00268977700102571
  38. Verlet, L. Phys. Rev. 1967, 159, 98. https://doi.org/10.1103/PhysRev.159.98

Cited by

  1. Molecular dynamics study of an insertion/duplication mutant of bacteriophage T4 lysozyme reveals the nature of α → β transition in full protein context vol.15, pp.20, 2013, https://doi.org/10.1039/c3cp44327b
  2. Environmental polarity induces conformational transitions in a helical peptide sequence from bacteriophage T4 lysozyme and its tandem duplicate: a molecular dynamics simulation study vol.21, pp.4, 2015, https://doi.org/10.1007/s00894-015-2621-5
  3. Aggregation of amyloid Aβ(1-40) peptide in perdeuterated 2,2,2-trifluoroethanol caused by ultrasound sonication vol.48, pp.6, 2010, https://doi.org/10.1002/mrc.2596
  4. A MOLECULAR DYNAMICS SIMULATION STUDY OF CONFORMATIONAL CHANGES AND SOLVATION OF Aβ PEPTIDE IN TRIFLUOROETHANOL AND WATER vol.8, pp.2, 2004, https://doi.org/10.1142/s0219633609004769
  5. Computational Study of Human Calcitonin (hCT) Oligomer vol.30, pp.12, 2004, https://doi.org/10.5012/bkcs.2009.30.12.3006
  6. Modelling of interactions between Aβ(25-35) peptide and phospholipid bilayers: effects of cholesterol and lipid saturation vol.10, pp.7, 2020, https://doi.org/10.1039/c9ra06424a
  7. Component of Cannabis, Cannabidiol, as a Possible Drug against the Cytotoxicity of Aβ(31-35) and Aβ(25-35) Peptides: An Investigation by Molecular Dynamics and Well-Tempered Metadynamics Sim vol.12, pp.4, 2004, https://doi.org/10.1021/acschemneuro.0c00692