• Title/Summary/Keyword: Pseudo-Likelihood

Search Result 41, Processing Time 0.023 seconds

An Approximation of the Cumulant Generating Functions of Diffusion Models and the Pseudo-likelihood Estimation Method (확산모형에 대한 누율생성함수의 근사와 가우도 추정법)

  • Lee, Yoon-Dong;Lee, Eun-Kyung
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.38 no.1
    • /
    • pp.201-216
    • /
    • 2013
  • Diffusion is a basic mathematical tool for modern financial engineering. The theory of the estimation methods for diffusion models is an important topic of the financial engineering. Many researches have been tried to apply the likelihood estimation method for estimating diffusion models. However, the likelihood estimation method for diffusion is complicated and needs much amount of computing. In this paper we develop the estimation methods which are simple enough to be compared to the Euler approximation method, and efficient enough statistically to be compared to the likelihood estimation method. We devise pseudo-likelihood and propose the maximum pseudo-likelihood estimation methods. The pseudo-likelihoods are obtained by approximating the transition density with normal distributions. The means and the variances of the distributions are obtained from the delta expansion suggested by Lee, Song and Lee (2012). We compare the newly suggested estimators with other existing estimators by simulation study. From the simulation study we find the maximum pseudo-likelihood estimator has very similar properties with the maximum likelihood estimator. Also the maximum pseudo-likelihood estimator is easy to apply to general diffusion models, and can be obtained by simple numerical steps.

Gaussian Processes for Source Separation: Pseudo-likelihood Maximization (유사-가능도 최대화를 통한 가우시안 프로세스 기반 음원분리)

  • Park, Sun-Ho;Choi, Seung-Jin
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.7
    • /
    • pp.417-423
    • /
    • 2008
  • In this paper we present a probabilistic method for source separation in the case here each source has a certain temporal structure. We tackle the problem of source separation by maximum pseudo-likelihood estimation, representing the latent function which characterizes the temporal structure of each source by a random process with a Gaussian prior. The resulting pseudo-likelihood of the data is Gaussian, determined by a mixing matrix as well as by the predictive mean and covariance matrix that can easily be computed by Gaussian process (GP) regression. Gradient-based optimization is applied to estimate the demixing matrix through maximizing the log-pseudo-likelihood of the data. umerical experiments confirm the useful behavior of our method, compared to existing source separation methods.

Improvement of Rating Curve Fitting Considering Variance Function with Pseudo-likelihood Estimation (의사우도추정법에 의한 분산함수를 고려한 수위-유량 관계 곡선 산정법 개선)

  • Lee, Woo-Seok;Kim, Sang-Ug;Chung, Eun-Sung;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.8
    • /
    • pp.807-823
    • /
    • 2008
  • This paper presents a technique for estimating discharge rating curve parameters. In typical practical applications, the original non-linear rating curve is transformed into a simple linear regression model by log-transforming the measurement without examining the effect of log transformation. The model of pseudo-likelihood estimation is developed in this study to deal with heteroscedasticity of residuals in the original non-linear model. The parameters of rating curves and variance functions of errors are simultaneously estimated by the pseudo-likelihood estimation(P-LE) method. Simulated annealing, a global optimization technique, is adapted to minimize the log likelihood of the weighted residuals. The P-LE model was then applied to a hypothetical site where stage-discharge data were generated by incorporating various errors. Results of the P-LE model show reduced error values and narrower confidence intervals than those of the common log-transform linear least squares(LT-LR) model. Also, the limit of water levels for segmentation of discharge rating curve is estimated in the process of P-LE using the Heaviside function. Finally, model performance of the conventional log-transformed linear regression and the developed model, P-LE are computed and compared. After statistical simulation, the developed method is then applied to the real data sets from 5 gauge stations in the Geum River basin. It can be suggested that this developed strategy is applied to real sites to successfully determine weights taking into account error distributions from the observed discharge data.

Revisiting the Bradley-Terry model and its application to information retrieval

  • Jeon, Jong-June;Kim, Yongdai
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.5
    • /
    • pp.1089-1099
    • /
    • 2013
  • The Bradley-Terry model is widely used for analysis of pairwise preference data. We explain that the popularity of Bradley-Terry model is gained due to not only easy computation but also some nice asymptotic properties when the model is misspecified. For information retrieval required to analyze big ranking data, we propose to use a pseudo likelihood based on the Bradley-Terry model even when the true model is different from the Bradley-Terry model. We justify using the Bradley-Terry model by proving that the estimated ranking based on the proposed pseudo likelihood is consistent when the true model belongs to the class of Thurstone models, which is much bigger than the Bradley-Terry model.

Revisiting a Gravity Model of Immigration: A Panel Data Analysis of Economic Determinants

  • Kim, Kyunghun
    • East Asian Economic Review
    • /
    • v.26 no.2
    • /
    • pp.143-169
    • /
    • 2022
  • This study investigates the effect of economic factors on immigration using the gravity model of immigration. Cross-sectional regression and panel data analyses are conducted from 2000 to 2019 using the OECD International Migration Database, which consists of 36 destination countries and 201 countries of origin. The Poisson pseudo-maximum-likelihood method, which can effectively correct potential biased estimates caused by zeros in the immigration data, is used for estimation. The results indicate that the economic factors strengthened after the global financial crisis. Additionally, this effect varies depending on the type of immigration (the income level of origin country). The gravity model applied to immigration performs reasonably well, but it is necessary to consider the country-specific and time-varying characteristics.

BCDR algorithm for network estimation based on pseudo-likelihood with parallelization using GPU (유사가능도 기반의 네트워크 추정 모형에 대한 GPU 병렬화 BCDR 알고리즘)

  • Kim, Byungsoo;Yu, Donghyeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.381-394
    • /
    • 2016
  • Graphical model represents conditional dependencies between variables as a graph with nodes and edges. It is widely used in various fields including physics, economics, and biology to describe complex association. Conditional dependencies can be estimated from a inverse covariance matrix, where zero off-diagonal elements denote conditional independence of corresponding variables. This paper proposes a efficient BCDR (block coordinate descent with random permutation) algorithm using graphics processing units and random permutation for the CONCORD (convex correlation selection method) based on the BCD (block coordinate descent) algorithm, which estimates a inverse covariance matrix based on pseudo-likelihood. We conduct numerical studies for two network structures to demonstrate the efficiency of the proposed algorithm for the CONCORD in terms of computation times.

BINARY RANDOM POWER APPROACH TO MODELING ASYMMETRIC CONDITIONAL HETEROSCEDASTICITY

  • KIM S.;HWANG S.Y.
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.1
    • /
    • pp.61-71
    • /
    • 2005
  • A class of asymmetric ARCH processes is proposed via binary random power transformations. This class accommodates traditional nonlinear models such as threshold ARCH (Rabemanjara and Zacoian (1993)) and Box-Cox type ARCH models(Higgins and Bera (1992)). Stationarity condition of the model is addressed. Iterative least squares(ILS) and pseudo maximum like-lihood(PML) methods are discussed for estimating parameters and related algorithms are presented. Illustrative analysis for Korea Stock Prices Index (KOSPI) data is conducted.

Multi-Pulse Amplitude and Location Estimation by Maximum-Likelihood Estimation in MPE-LPC Speech Synthesis (MPE-LPC음성합성에서 Maximum- Likelihood Estimation에 의한 Multi-Pulse의 크기와 위치 추정)

  • 이기용;최홍섭;안수길
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.9
    • /
    • pp.1436-1443
    • /
    • 1989
  • In this paper, we propose a maximum-likelihood estimation(MLE) method to obtain the location and the amplitude of the pulses in MPE( multi-pulse excitation)-LPC speech synthesis using multi-pulses as excitation source. This MLE method computes the value maximizing the likelihood function with respect to unknown parameters(amplitude and position of the pulses) for the observed data sequence. Thus in the case of overlapped pulses, the method is equivalent to Ozawa's crosscorrelation method, resulting in equal amount of computation and sound quality with the cross-correlation method. We show by computer simulation: the multi-pulses obtained by MLE method are(1) pseudo-periodic in pitch in the case of voicde sound, (2) the pulses are random for unvoiced sound, (3) the pulses change from random to periodic in the interval where the original speech signal changes from unvoiced to voiced. Short time power specta of original speech and syunthesized speech obtained by using multi-pulses as excitation source are quite similar to each other at the formants.

  • PDF

Taxonomy of Ulva causing blooms from Jeju Island, Korea with new species, U. pseudo-ohnoi sp. nov. (Ulvales, Chlorophyta)

  • Lee, Hyung Woo;Kang, Jeong Chan;Kim, Myung Sook
    • ALGAE
    • /
    • v.34 no.4
    • /
    • pp.253-266
    • /
    • 2019
  • Several species classified to the genus Ulva are primarily responsible for causing green tides all over the world. For almost two decades, green tides have been resulted in numerous ecological problems along the eastern coast of Jeju Island, Korea. In order to characterize the species of Ulva responsible for causing the massive blooms on Jeju Island, we conducted DNA barcoding of tufA and rbcL sequences on 183 specimens of Ulva from eight sites on Jeju Island. The concatenated analysis identified five bloom-forming species: U. australis, U. lactuca, U. laetevirens, U. ohnoi and a novel species, U. pseudo-ohnoi sp. nov. Among them, U. australis, U. lactuca, and U. laetevirens caused to the blooms coming mainly from the substratum. U. ohnoi and U. pseudo-ohnoi sp. nov. were causative the free-floating blooms. Four species, except U. australis, are characterized by marginal teeth. A novel species, U. pseudo-ohnoi sp. nov., is clearly diverged from the U. lactuca, U. laetevirens, and U. ohnoi clade in the concatenated maximum likelihood analysis. Accurate species delimitation will contribute to a management of massive Ulva blooms based on this more comprehensive knowledge.