• Title/Summary/Keyword: Pseudo second order model

Search Result 303, Processing Time 0.031 seconds

Phosphate Removal of Aqueous Solutions using Industrial Wastes (산업폐기물을 이용한 수용액 중 인산염의 흡착 제거)

  • Kang, Ku;Kim, Young-Kee;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.1
    • /
    • pp.49-57
    • /
    • 2013
  • The present study was conducted to investigate phosphate removal from aqueous solution using industrial wastes, red mud (RM), acid treated red mud (ATRM) and converter furnace steel slag (CFSS). The chemical composition of adsorbents was analyzed using X-ray fluorescence (XRF). Batch experiments and elution experiments using water tank were performed to examine environmental factors that influences on phosphate removal. Kinetic sorption data of RM, ATRM, and CFSS were described well by the pseudo second-order kinetic sorption model, and equilibrium sorption data of all adsorbents obeyed Freundlich isotherm model. The adsorption capacities of adsorbents followed order: ATRM (7.06 mg/g)>RM (4.34 mg/g)>CFSS (1.88 mg/g). Increasing pH from 3 to 11, the amount of adsorbed phosphate on all RM, ATRM, and CFSS were decreased. The presence of sulfate and carbonate decreased the phosphate removal of RM and ATRM but did not influence on the performance of CFSS. The phosphate removal of RM, ATRM, and CFSS was greater in seawater than deionized water, resulting from the presence of cations in seawater. The water tank elution experiments showed that RM capping blocked the elution of phosphate effectively. It was concluded that the adsorbents can be successfully used for the removal of the phosphate from the aqueous solutions.

Response Surface Modeling for the Adsorption of Dye Eosin Y by Activated Carbon Prepared from Waste Citrus Peel (폐감귤박으로 만든 활성탄을 이용한 염료 Eosin Y 흡착에서 반응표면 모델링)

  • Kam, Sang-Kyu;Lee, Min-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.270-277
    • /
    • 2018
  • The adsorption of Eosin Y by the activated carbon (WCAC) prepared from waste citrus peel was investigated by using response surface methodology (RSM) and Box-Behnken design (BBD) statistical procedures. Experiments were carried out as per BBD with three input parameters, the Eosin Y concentration (Conc. : 30~50 mg/L), the solution temperature (Temp. : 293~313 K), and the adsorbent dose (Dose : 0.05~0.15 g/L). Regression analysis showed a good fit of the experimental data to the second-order polynomial model with coefficients of the determination ($R^2$) value of 0.9851 and P-value (Lack of fit) of 0.342. An optimum dye uptake of 59.3 mg/g was achieved at the dye concentration of 50 mg/L, the temperature of 333 K, and the adsorbent dose of 0.1056 g. The adsorption process of Eosin Y by WCAC can be well described by the pseudo second order kinetic model. The experimental data followed the Langmuir isotherm model.

Adsorption Characteristics of Radioactive Cs Ion by Zeolite X (제올라이트 NaX에 의한 방사성 물질인 Cs 이온의 흡착 특성)

  • Lee, Chang-Han;Lee, Min-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.2
    • /
    • pp.66-73
    • /
    • 2017
  • This study was to evaluate the influential parameters such as intial Cs concentration, reaction temperature, contact time and pH variation of solution on Cs adsorption. Using the experimental data, adsorption kinetics, isotherms and thermodynamic properties were analyzed. The Cs ion adsorption of the zeolite X was effective in the range from pH 5 to 10 and reached equilibrium after 60 minutes. The adsorption kinetics and isotherms of Cs ion with the zeolite X was described well by the pseudo-second-order kinetic and Langmuir isotherm model. The maximum adsorption capacities of Cs ion calculated from Langmuir isotherm model at 293~333 K were from 303.03 mg/g to 333.33 mg/g. It was found that thermodynamic property of Cs ion absorption on the zeolite X was spontaneous and endothermic reaction. The experimental data were fitted a second-order polynomial equation by the multiple regression analysis. The values of the dependent variable calculated by this best fitted model equation were in very good agreement with the experimentally obtained values.

Adsorption Characteristics of Cu Ions by Zeolite Na-A Synthesized from Jeju Volcanic Rocks (제주 화산석으로부터 합성한 Na-A 제올라이트에 의한 Cu 이온의 흡착 특성)

  • Ju, Chang-Sik;Lee, Chang-Han;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.27 no.5
    • /
    • pp.299-308
    • /
    • 2018
  • The adsorption characteristics of Cu ions were studied using the zeolite Na-A synthesized from Jeju volcanic rocks. The effects of various operating parameters such as initial concentration of Cu ions, contact time, solution pH, and solution temperature were investigated in batch experiments. The adsorption of Cu ions by Na-A zeolite was fitted well by pseudo-second-order kinetics and the Langmuir isotherm model. The maximum adsorption capacity determined using the Langmuir isotherm model was 152.95 mg/g. In addition, the adsorption of Cu ions by zeolite Na-A was primarily controlled by particle diffusion model in comparison with the film diffusion model. As the temperature increased from 303 K to 323 K, ${\Delta}G^o$ decreased from -2.22 kJ/mol to -3.41 kJ/mol, indicating that the adsorption of Cu ions by Na-A zeolite is spontaneous process.

Removal of 2,4-Dinitrophenol from an Aqueous Solution by Wood-Based Activated Carbon (목질계 활성탄을 이용한 수중의 2,4-Dinitrophenol 흡착 제거)

  • Ju, Chang-Sik;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.26 no.5
    • /
    • pp.609-619
    • /
    • 2017
  • The removal characteristics of 2,4-dinitrophenol (2,4-DNP) from an aqueous solution by commercial Wood-based Activated Carbon (WAC) have been studied. The effects of various experimental parameters were investigated using a batch adsorption technique. The adsorption capacity of 2,4-DNP by WAC increased with a decrease in the dosage and particle size of WAC, temperature and the initial pH of the solution, and increased with an increase in the initial concentration of the solution. The adsorption equilibrium data were best described by the Redlich-Peterson isotherm model. The maximum adsorption capacities of 2,4-DNP by WAC were 573.07 mg/g at 293 K, 500.00 mg/g at 313 K, and 476.19 mg/g at 333 K, decreasing with increasing temperature. The kinetic data were well fitted to the pseudo-second-order model, and the results of the intra-particle diffusion model suggested that the adsorption process was mainly controlled by particle diffusion. The thermodynamic analysis indicated that the adsorption of 2,4-DNP by WAC was an endothermic and spontaneous process.

Adsorption characteristics of lead ion in aqueous solution by volcanic ash (화산재에 의한 수용액의 납 이온 흡착특성)

  • Kim, Mi-Yeon;So, Myeong-Gi;Kim, Yeong-Gwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.359-366
    • /
    • 2011
  • The feasibility of using volcanic ash for lead ion removal from wastewater was evaluated. The adsorption experiments were carried out in batch tests using volcanic ash that was treated with either NaOH or HCl prior to the use. Volcanic ash dose, temperature and initial Pb(II) concentration were chosen as 3 operational variables for a $2^3$ factorial design. Ash dose and concentration were found to be significant factors affecting Pb(II) adsorption. The removal of Pb(II) was enhanced with increasing volcanic ash dose and with decreasing the initial Pb(II) concentration. Pb(II) adsorption on the volcanic ash surface was spontaneous reaction and favored at high temperatures. Calculation of Gibb's free energy indicated that the adsorption was endothermic reaction. The equilibrium parameters were determined by fitting the Langmuir and Freundlich isotherms, and Langmuir model better fitted to the data than Freundlich model. BTV(base-treated volcanic ash) showed the maximum adsorption capacity($Q_{max}$) of 47.39mg/g. A pseudo second-order kinetic model was fitted to the data and the calculated $q_e$ values from the kinetic model were found close to the values obtained from the equilibrium experiments. The results of this study provided useful information about the adsorption characteristics of volcanic ash for Pb(II) removal from aqueous solution.

Removal of reactive black 5 dye by using polyoxometalate-membrane

  • Topaloglu, Ali Kemal;Yildirim, Yilmaz
    • Membrane and Water Treatment
    • /
    • v.12 no.1
    • /
    • pp.23-35
    • /
    • 2021
  • A POM-membrane was fabricated by immobilizing a keggin type polyoxometalate (POM) H5PV2Mo10O40 onto the surface of microporous flat-sheet polymeric polyvinylidene fluoride (PVFD) membrane using a chemical deposition method. The POM-membrane was characterized by FT-IR, SEM and EDX to confirm existing of the POM onto the membrane surface. The POM-membrane was used to remove an anionic textile dye (Reactive Black 5 named as an RB5) from aqueous phases with a cross-flow membrane filtration and a batch adsorption system. The dye removal efficiency of the POM-membrane using the cross-flow membrane filtration system and the batch adsorption system was about 88% and 98%, respectively. The influence factors such as contact time, adsorbent dosage, pH, and initial dye concentration were investigated to understand the adsorption mechanism of the RB5 dye onto the POM-membrane. To find the best fitting isotherm model, Langmuir, Freundlich, BET and Harkins-Jura isotherm models were used to analyze the experimental data. The isotherm analysis showed that the Langmuir isotherm model was found to the best fit for the adsorption data (R2 = 0.9982, qmax = 24.87 mg/g). Also, adsorption kinetic models showed the pseudo second order kinetic model was found the best model to fit the experimental data (R2 = 0.9989, q = 8.29 mg/g, C0 = 15 ppm). Moreover, after four times regeneration with HNO3 acid, the POM-membrane showed high regenerability without losing dye adsorption capacity.

Immobilization of Diatom Phaeodactylum tricornutum with Filamentous Fungi and Its Kinetics

  • Tyler J. Barzee;Hamed M. El-Mashad;Andrew R. Burch;Annaliese K. Franz;Ruihong Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.251-259
    • /
    • 2023
  • Immobilizing microalgae cells in a hyphal matrix can simplify harvest while producing novel mycoalgae products with potential food, feed, biomaterial, and renewable energy applications; however, limited quantitative information to describe the process and its applicability under various conditions leads to difficulties in comparing across studies and scaling-up. Here, we demonstrate the immobilization of both active and heat-deactivated marine diatom Phaeodactylum tricornutum (UTEX 466) using different loadings of fungal pellets (Aspergillus sp.) and model the process through kinetics and equilibrium models. Active P. tricornutum cells were not required for the fungal-assisted immobilization process and the fungal isolate was able to immobilize more than its original mass of microalgae. The Freundlich isotherm model adequately described the equilibrium immobilization characteristics and indicated increased normalized algae immobilization (g algae removed/g fungi loaded) under low fungal pellet loadings. The kinetics of algae immobilization by the fungal pellets were found to be adequately modeled using both a pseudo-second order model and a model previously developed for fungal-assisted algae immobilization. These results provide new insights into the behavior and potential applications of fungal-assisted algae immobilization.

Adsorption Equilibrium, Kinetic and Thermodynamic Param (활성탄을 이용한 Acid Green 27의 흡착평형, 동역학 및 열역학 파라미터의 연구)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.514-519
    • /
    • 2017
  • Adsorption characteristics of acid green 27 dye using activated carbon were investigated as function of adsorbent dose, pH, initial concentration, contact time and temperature. Freundlich isotherm explained adsorption of acid green 27 dye very well and Freundlich separation factors (1/n=0.293~0.387) were found that this process could be employed as effective treatment method. Kinetic studies showed that the kinetic data were well described by the pseudo second-order kinetic model. Pseudo second rate constant ($k_2$) decreased with the increase in initial acid green 27 concentration. Activation energy (10.457 kJ/mol) and enthalpy (79.946 kJ/mol) indicated that adsorption process was physisorption and endothermic. Since Gibbs free energy decreased with increasing temperature, spontaneity of adsorption reaction increased with increasing temperature in the temperature range of 298 K~318 K.

Development of the Calcium Alginate Bead Immobilized with $TiOSO_4$ for the Efficient Removal of Phosphorous (Phosphorous의 효율적인 제거를 위한 $TiOSO_4$ 고정화 Calcium Alginate Bead의 제조기법에 관한 연구)

  • Choi, Jae-Woo;Lee, Seung-Yeon;Chung, Seung-Gun;Lee, Sang-Hyup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.162-166
    • /
    • 2011
  • Phosphorous contaminated in the effluent from sewage treatment plants can cause the eutrophication in surface water bodies. In this study, a powder of titanium oxysulfate-sulfuric acid made of ion-exchange materials was immobilized in an alginate gel and this material was examined to evaluate its phosphorous removal efficiency. Equilibrium and kinetic studies were carried out to quantify the adsorption capacity and time dependent removal rate of phosphorous. Adsorption isotherms and kinetic parameters were obtained for the entrapped titanium beads with three different methods. Equilibrium data were analyzed using Langmuir adsorption isotherm model and found to be well fitted to the model. The maximum adsorption capacity for phosphorous by the titanium bead synthesized with the solution method was 92.26 mg/g. Kinetic data followed a pseudo-second-order kinetic model. Due to the low production cost and high adsorption capacity, the titanium bead synthesized by the solution method has a potential to be utilized for the cost-effective removal of phosphorous from wastewater.