DOI QR코드

DOI QR Code

Removal of 2,4-Dinitrophenol from an Aqueous Solution by Wood-Based Activated Carbon

목질계 활성탄을 이용한 수중의 2,4-Dinitrophenol 흡착 제거

  • Ju, Chang-Sik (Department of Chemical Engineering, Pukyong National University) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • Received : 2017.02.28
  • Accepted : 2017.03.29
  • Published : 2017.05.31

Abstract

The removal characteristics of 2,4-dinitrophenol (2,4-DNP) from an aqueous solution by commercial Wood-based Activated Carbon (WAC) have been studied. The effects of various experimental parameters were investigated using a batch adsorption technique. The adsorption capacity of 2,4-DNP by WAC increased with a decrease in the dosage and particle size of WAC, temperature and the initial pH of the solution, and increased with an increase in the initial concentration of the solution. The adsorption equilibrium data were best described by the Redlich-Peterson isotherm model. The maximum adsorption capacities of 2,4-DNP by WAC were 573.07 mg/g at 293 K, 500.00 mg/g at 313 K, and 476.19 mg/g at 333 K, decreasing with increasing temperature. The kinetic data were well fitted to the pseudo-second-order model, and the results of the intra-particle diffusion model suggested that the adsorption process was mainly controlled by particle diffusion. The thermodynamic analysis indicated that the adsorption of 2,4-DNP by WAC was an endothermic and spontaneous process.

Keywords

References

  1. Abdel-Ghani, N. T., El-Chaghaby, G. A., Helal, F. S., 2016, Preparation, characterization and phenol adsorption capacity of activated carbons from african beech wood sawdust, Global J. Environ. Sci. Manage., 2(3), 209-222.
  2. Akgerman, A., Zardkoohi, M., 1996, Adsorption of phenolic compounds on fly ash, J. Chem. Eng. Data, 41, 185-187. https://doi.org/10.1021/je9502253
  3. Arockiaraj, I., Karthikeyan, S., Renuga, V., 2014, Sorption dynamics of reactive and direct dyes onto activated carbon derived from Ipomoea carnea stem waste by sulphate process, Int. J. Nano. Corr. Sci. Eng., 2(5), 245-254.
  4. Bodalo, A., Gomeaz, E., Hidalgo, A. M., Gomez, M., Murcia, M. D., Lopez, I., 2009, Nanofiltration membranes to reduce phenol concentration in wastewater, Desalination, 245(1), 680-686. https://doi.org/10.1016/j.desal.2009.02.037
  5. Carvajal-Bernal, A. M., Gomez, F., Giraldo, L., Moreno-Pirajan, J. C., 2015, Adsorption of phenol and 2,4-dinitrophenol on activated carbons with surface modifivations, Microporus Mesoporous Mater., 209, 150-156. https://doi.org/10.1016/j.micromeso.2015.01.052
  6. Chairez, J., Poznyak, A., Poznyak, T., 2007, Reconstruction of dynamics of aqueous phenols and their products formation in ozonation using differential neural network observers, Ind. Eng. Chem. Res., 46, 5855-5866. https://doi.org/10.1021/ie0705103
  7. Dubinin, M. M., 1960, The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface, Chem. Rev., 60(2), 235-241. https://doi.org/10.1021/cr60204a006
  8. Ewa, L. G., Piotr, R., 2014, High Adsorption capacity carbons from biomass and synthetic polymers for the removal of organic compounds from water, Water Air Soil Pollut., 225(8), 2082-2092. https://doi.org/10.1007/s11270-014-2082-y
  9. Freundlich, H. M. F., 1906, Over the adsorption in solution, J. Phys. Chem., 57, 385-470.
  10. Ho, Y. S., McKay, G., 1998, The kinetics of sorption of basic dyes from aqueous solution by Sphagnum moss peat, Can. J. Chem. Eng., 76(4), 822-827. https://doi.org/10.1002/cjce.5450760419
  11. Kam, S. K., Hyun, S. S., Lee, M. G., 2011, Removal of divalent heavy metal ions by Na-P1 synthesized from Jeju scoria, J. Environ. Sci. Intern., 20(10), 1337-1345. https://doi.org/10.5322/JES.2011.20.10.1337
  12. Karagoz, S., Tay, T., Ucar, S., Erdem, M., 2008, Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption, Bioresour. Technol., 99(14), 6214-6222. https://doi.org/10.1016/j.biortech.2007.12.019
  13. Kim, H., Lee, M. E., Kang, S., Chung, J. W., 2013, Thermodynamic analysis of phenol adsorption by powdered activated carbon, J. Kor. Soc. Environ. Eng., 35(3), 220-225. https://doi.org/10.4491/KSEE.2013.35.3.220
  14. Kim, J. S., Shim, W. G., Kim, Y. T., Moon, H., Kim, S. J., Cho, S. Y., 2002, Adsorption equilibrium characteristics of 2,4-dichlorophenoxyacetic acid and 2,4-dinitrophenol on granular activated carbons, Kor. J. Chem. Eng., 19(6), 967-977. https://doi.org/10.1007/BF02707219
  15. Kim, Y. T., Cho, S. Y., Kim, J. H., 2015, Adsorption characteristics of 2,4-DNP on bamboo-based activated carbon, Int. Conf. Innov. Chem. Agricult. Eng., 8. 106-109.
  16. Langmuir, I., 1918, The adsorption od gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40, 1361-140. https://doi.org/10.1021/ja02242a004
  17. Lee, C. H., Lee, M. G., 2015, Removal of Cs and Sr ions by absorbent immobilized zeolite with PVA, J. Korean Soc. Environ. Eng., 37(8), 450-457. https://doi.org/10.4491/KSEE.2015.37.8.450
  18. Lee, M. G., Kam, S. K., Suh, K. H., 2012, Adsorption of non-degradable eosin Y by activated carbon, J. Environ. Sci. Intern., 21(5), 623-631. https://doi.org/10.5322/JES.2012.21.5.623
  19. Lu, Y. X., Zou, J. W., Jin, Z. M., Wang, Y. H., Zhang, H. X., Jiang, Y. J., Yu, Q. S., 2006, Proton exchangers between phenols and ammonia or amines: A Computational study, J. Phys. Chem. A, 110, 9261-9266. https://doi.org/10.1021/jp060790k
  20. Ma, Y., Gao, N., Chu, W., Li, C., 2013, Removal of phenol by powdered activated carbon adsorption, Front. Environ. Sci. Eng., 7(2), 158-165. https://doi.org/10.1007/s11783-012-0479-7
  21. Mohammad, M. R., Afaj, A. H., Mahmoud, M. N., 2016, Study of some effecting factors on the removal of phenol from aqueous solutions by adsorption onto activated carbon, J. Int. Environ. Appl. Sci., 11(2), 148-153.
  22. Mohanty, K., Jha, M., Meikap, B. C., Biswas, M. N., 2005, Preparation and characterization of activated carbons from Terminalia arjuna nut with zinc chloride activation for the removal of phenol from wastewater, Ind. Eng. Chem. Res., 44(11), 4128-4138. https://doi.org/10.1021/ie050162+
  23. Mohdsalleh, M. A., Mahmoud, K., Abdul-Karim, A. A., Idris, A., 2011, Cationic and anionic dye adsorption by agricultural solid wastes: A Comprehensive review, Desalination, 280(11), 1-13. https://doi.org/10.1016/j.desal.2011.07.019
  24. Murthy, Z. V. P., Gupta, S. K., 1998, Thin film composite polyamide membrane parameters estimation for phenol-water system by reverse osmosis, Sep. Sci. Technol., 33, 2541-2557. https://doi.org/10.1080/01496399808545318
  25. Nandhakumar, V., Amudha, B., Roopa, V., 2015, Adsorption of eosin dyes onto activated carbon prepared from wood of Adina cardifolia hook A Kinetic and isotherm study, Int. J. Res. Chem. Environ., 5(4), 1-7.
  26. Porkodi, K., Kumar, K. V., 2007, Equilibrium, kinetics and mechanism modeling and simulation of basicand acid dyes sorption onto jute fiber carbon: Eosin yellow, malachite green and crystal violet single component systems, J. Hazard. Mater., 143(1), 311-327. https://doi.org/10.1016/j.jhazmat.2006.09.029
  27. Redlich, O., Peterson, D. L., 1959, A Useful adsorption isotherm, J. Phys. Chem., 63(6), 1024. https://doi.org/10.1021/j150576a611
  28. Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R., DeMarini, D. M., 2007, Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water, A Review and roadmap for research, Muta. Res., 636(1), 178-242. https://doi.org/10.1016/j.mrrev.2007.09.001
  29. Sathishkumar, M., Vijayareghavan, K., Binupriya, A. R., Stephan, A. M., Choi, J. G., Yun, S. E., 2008, Porogen effect on characteristics of banana pith carbon and the sorption of dichlorophenols, J. Colloid Interf. Sci., 320(1), 22-29. https://doi.org/10.1016/j.jcis.2007.12.011
  30. Shaarani, F. W., Hameed, B. H., 2011, Ammonia-modified activated carbon for the adsorption of 2,4-dichlorophenol, Chem. Eng. J., 169(1), 180-185. https://doi.org/10.1016/j.cej.2011.03.002
  31. Ucer, A., Uyanik, A., Aygun, 2006, Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon, Sep. Purif. Technol., 47(3), 113-118. https://doi.org/10.1016/j.seppur.2005.06.012
  32. Vasiljevic, T., Spasojevic, J., Bacic, M., Onjia, A., Lausevic, M., 2006, Adsorption of phenol and 2,4-dinitrophenol on activated carbon cloth: The influence of sorbent surface acidity and pH, Separ. Sci. Technol., 41(6), 1061-1075. https://doi.org/10.1080/01496390600588853
  33. Weber, W. J., Morris, J. C., 1963, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89, 31-60.
  34. Wu, F. C., Liu, B. L., Wu, K. T., Tseng, R. L., 2010, A New linear form analysis of Redlich-Peterson isotherm equation for the adsorptions of dyes, Chem. Eng. J., 162(1), 21-27. https://doi.org/10.1016/j.cej.2010.03.006
  35. Yang, C., Qian, Y., Zhang, L., Feng, J., 2006, Solvent extraction process development and on-site trial plant for phenol removal from industrial coal-gasification wastewater, Chem. Eng. J., 117(2), 179-185. https://doi.org/10.1016/j.cej.2005.12.011
  36. Zheng, G. M., Xu, K., Huang, J. H., Xue, L., Fang, Y. Y., Qu, Y. H., 2008, Micellar enhanced ultrafiltration of phenol in synthetic wastewater using polysulfone spiral membrane, J. Mm. Sci., 310(1), 149-160.