DOI QR코드

DOI QR Code

Meteorological Characteristics related to the Variation in Ozone Concentrations before, during, and after the Typhoon Period in the Korean Peninsula

한반도 태풍영향 전·중·후 시기동안 오존농도 변화에 관한 기상특성 분석

  • Received : 2017.03.07
  • Accepted : 2017.04.11
  • Published : 2017.05.31

Abstract

Meteorological characteristics related to variations in ozone ($O_3$) concentrations in the Korean peninsula before, during, and after Typhoon Talas (1112) were analyzed using both observation data and numerical modeling. This case study takes into account a high $O_3$ episode (e.g., a daily maximum of ${\geq}90ppb$) without rainfall. Before the typhoon period, high $O_3$ concentrations in the study areas (e.g., Daejeon, Daegu, and Busan) resulted from the combined effects of stable atmospheric conditions with high temperature under a migratory anticyclone (including subsiding air), and wind convergence due to a change in direction caused by the typhoon. The $O_3$ concentrations during the typhoon period decreased around the study area due to very weak photochemical activity under increased cloud cover and active vertical dispersion under a low pressure system. However, the maximum $O_3$ concentrations during this period were somewhat high (similar to those in the normal period extraneous to the typhoon), possibly because of the relatively slow photochemical loss of $O_3$ by a $H_2O+O(^1D)$ reaction resulting from the low air temperature and low relative humidity. The lowest $O_3$ concentrations during the typhoon period were relatively high compared to the period before and after the typhoon, mainly due to the transport effect resulting from the strong nocturnal winds caused by the typhoon. In addition, the $O_3$ increase observed at night in Daegu and Busan was primarily caused by local wind conditions (e.g., mountain winds) and atmospheric stagnation in the wind convergence zone around inland mountains and valleys.

Keywords

References

  1. Ahn, S. H., Park, S. Y., Kim, J. Y., Kim, B. J., 2014, Effect of the rainfall during typhoon periods on the variation of concentration of ambient air pollutants ($PM_{10}$, $NO_2$, CO, $SO_2$) in the Korean peninsula, J. Kor. Soc. Atmos. Environ., 30, 128-138. https://doi.org/10.5572/KOSAE.2014.30.2.128
  2. Chang, Y. S., Carmichael, G. R., Kurita, H., Ueda, H., 1989, The transport and formation of photochemical oxidants in central Japan, Atmos. Environ., 23, 363-393. https://doi.org/10.1016/0004-6981(89)90584-2
  3. Dudhia, J., 1989, Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077-3107. https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
  4. Fu, Y. F., Xian, T., Lu, D. R., Liu, G. S., Heng, Z. W., Sun, L., Liu, Q., Wang, Y., Yang, Y. J., 2013, Ozone vertical variations during a typhoon derived from the OMI observations and reanalysis data, Chinese Sci. Bull., 58, 3890-3894. https://doi.org/10.1007/s11434-013-6024-7
  5. Gerasopoulos, E., Kouvarakis, G., Vrekoussis, M., Donoussis, C., Mihalopoulos, N., Kanakidou, M., 2006, Photochemical ozone production in the Eastern Mediterranean, Atmos. Environ., 40, 3057-3069. https://doi.org/10.1016/j.atmosenv.2005.12.061
  6. Ghim, Y. S., Oh, H. S., 1999, Studies of high-ozone episodes in the Greater Seoul Area between 1990 and 1997, J. Kor. Soc. Atmos. Environ., 15, 267-280.
  7. Ghim, Y. S., Kim, Y. J., Yoon, S. C., 1999, Precipitation and cloud cover on high ozone days, J. Kor. Soc. Atmos. Environ., 15, 747-755.
  8. Hawbecker, P., 2013, A Comparison of 1-way and 2-way nesting in the WRF-LES framework, M. S. Dissertation, Texas Tech University, Texas, USA.
  9. Hong, S., 2013, Impact of dry deposition on ozone concentration in surface air over East Asia, M. S. Dissertation, Seoul National University, Seoul, Korea.
  10. Hong, S.-Y., Lim, J. O. J., 2006, The WRF single-moment 6-class microphysics scheme (WSM6), J. Korean Meteor. Soc., 42, 129-151.
  11. Hong, S.-Y., Noh, Y., Dudhia, J., 2006, A New vertical diffusion package with an explicit treatment of entrainment processes, Mon. Wea. Rev., 134, 2318-2341. https://doi.org/10.1175/MWR3199.1
  12. Kain, J. S., 2004, The Kain-Fritsch convective parameterization: An Update, J. Appl. Meteor., 43, 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
  13. Kim, C.-H., Park, S.-U., 1998, Characteristics of the seasonal variation of surface ozone ($O_3$) concentrations observed in the Kyongin region, Atmos., 34, 560-569.
  14. Kim, C.-H., Song, C.-K., Park, S.-U., 1999, Simulations of surface ozone concentration distribution over the Kyongin region under the different synoptic wind fields, Atmos., 35, 441-456.
  15. Kim, Y.-K., Moon, Y.-S., Oh, I.-B., Hwang, M.-K., 2002, Temperature and local wind flow influencing surface ozone enhancement in Seoul and Busan, Korea, Atmos., 38, 319-331.
  16. Korea Meteorological Administration (KMA), 2011, 2011 Typhoon analysis report, KMA, 218.
  17. Lam, H. Y., 2014, Analysis of meteorological criteria leading to tropical cyclone related ozone episodes in Hongkong, Hong Kong University of Science and Technology, 195.
  18. Shon, Z.-H., Song, S.-K., Lee, G., 2010, Photochemical analysis of ozone levels in the gulf of Gwangyang in the spring and summer of 2009, J. Kor. Soc. Atmos. Environ., 26, 161-176. https://doi.org/10.5572/KOSAE.2010.26.2.161
  19. Lee, H.-W., Kim, Y.-K., Kim, H.-D., Jung, W.-S., Hyun, M.-S., 2001, Relationship between thermal low and long-range transport of air pollutants, J. Kor. Environ. Sci., 10, 143-151.
  20. Liu, C. M., Huang, C. Y., Shieh, S. L., Wu, C. C., 1994, Important meteorological parameters for ozone episodes experienced in the Taipei basin, Atmos. Environ., 28, 159-173. https://doi.org/10.1016/1352-2310(94)90031-0
  21. Liu, X., Mauersberger, G., Moeller, D., 1997, The effects of cloud processes on the tropospheric photochemistry: And improvement of the EURAD model with a coupled gaseous and aqueous chemical mechanism, Atmos. Environ., 31, 3119-3135. https://doi.org/10.1016/S1352-2310(97)00057-5
  22. MacDonald, C. P., Roberts, P. P., Main, H. H., Dye, T. S., Coe, D. L., Yarbrough, J., 2001, The 1996 Paso del Norte ozone study: Analysis of meteorological and air quality data that influence local ozone concentrations, Sci. Total Environ., 276, 93-109. https://doi.org/10.1016/S0048-9697(01)00774-4
  23. Mayer, H., 1999, Air pollution in cities, Atmos. Environ., 33, 4029-4037. https://doi.org/10.1016/S1352-2310(99)00144-2
  24. Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., Clough, S. A., 1997, Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102, 16663-16682. https://doi.org/10.1029/97JD00237
  25. NARSTO, 2000, An Assessment of tropospheric ozone pollution - A North American perspective, NARSTO Management Office (Envair), Pasco, Washington.
  26. Niatthijsen, J., Builtjes, P. J., Meijer, E. W., Boersen, G., 1997, Modelling cloud effects on ozone on a regional scale: A Case study, Atmos. Environ., 31, 3227-3238. https://doi.org/10.1016/S1352-2310(97)00064-2
  27. Nicholls, M. E., Pielke, R. A., Eastman, J. L., Finley, C. A., Lyons, W. A., Tremback, C. J., Walko, R. L., Cotton, W. R., 1995, Applications of the RAMS numerical model to dispersion over urban areas, in: Cermak, J. E., Davenport, A. G., Plate, E. J., Viegas, D. X. (eds.), Wind climate in cities, Kluwer Academic Publ., Netherlands, 703-732.
  28. Oh, I.-B., 2003, Meteorological mechanisms for high-ozone occurrences in the metropolitan areas, Korea : Observational and modeling study, Ph. D. Dissertation, Busan National University, Busan, Korea.
  29. Seinfeld, J. H., Pandis, S. N., 2006, Atmospheric chemistry and physics: From air pollution to climate change, 2nd ed. John Wiley & Sons, Inc., New York.
  30. Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Duda, M. G., Huang, X. -Y., Powers, J. G., Wang, W., 2008, A Description of the advanced research WRF Version 3, NCAR, 125.
  31. Song, S.-K., Han, S.-B., Kim, S.-W., 2014, Analysis of meteorological characteristics related to changes in atmospheric environment on Jeju island during 2010-2012, J. Kor. Environ. Sci., 23, 1889-1907.
  32. Song, S.-K., Kim, Y.-K., Kang, J.-E., 2009, Characteristics of ozone concentrations around an urban valley based on the intensive air quality measurement during spring and summer of 2006, J. Korean Soc. Atmos. Environ., 25, 289-303. https://doi.org/10.5572/KOSAE.2009.25.4.289
  33. Song, S.-K., Kim, Y.-K., Shon, Z.-H., Ryu, J. Y., 2012, Photochemical analyses of ozone and related compounds under various environmental conditions, Atmos. Environ., 47, 446-458. https://doi.org/10.1016/j.atmosenv.2011.10.026
  34. Song, S.-K., Shon, Z.-H., Kim, Y.-K., 2010, A Study of ozone photochemistry in different physico-chemical properties of air masses around the Mexico City metropolitan area (MCMA) using aircraft observations in 2006, J. Kor. Soc. Atmos. Environ., 26, 118-136. https://doi.org/10.5572/KOSAE.2010.26.2.118
  35. Spirig, C., Neftel, A., Kleinman, L. I., Hjorth, J., 2002, $NO_2$ versus VOC limitation of $O_3$ production in the Po valley: Local and integrated view based on observations, J. Geophys. Res., 107(D22), 8191. https://doi.org/10.1029/2001JD000561
  36. Walcek, C. J., Yuan, H. H., Stockwell, W. R., 1997, The influence of aqueous-phase chemical reactions on ozone formation in polluted and nonpolluted clouds, Atmos. Environ., 31, 1221-1237. https://doi.org/10.1016/S1352-2310(96)00257-9
  37. Wang, T., Wu, Y. Y., Cheung, T. F., Lam, K. S., 2001, A Study of surface ozone and the relation to complex wind flow in Hong Kong, Atmos. Environ., 35, 3203-3215. https://doi.org/10.1016/S1352-2310(00)00558-6
  38. Wishinski, P. R., Poirot, R. L., 1998, Long-term ozone trajectory climatology for the Eastern US Part I Methods, A&WMA's 91st Annual Meeting & Exhibition, June 14-18, San Diego CA, Paper No.98-TP43.05.