DOI QR코드

DOI QR Code

Response Surface Modeling for the Adsorption of Dye Eosin Y by Activated Carbon Prepared from Waste Citrus Peel

폐감귤박으로 만든 활성탄을 이용한 염료 Eosin Y 흡착에서 반응표면 모델링

  • Kam, Sang-Kyu (Department of Chemical Engineering, Pukyong National University) ;
  • Lee, Min-Gyu (Department of Environmental Engineering, Jeju National University)
  • 감상규 (부경대학교 화학공학과) ;
  • 이민규 (제주대학교 환경공학과)
  • Received : 2017.12.27
  • Accepted : 2018.02.11
  • Published : 2018.06.10

Abstract

The adsorption of Eosin Y by the activated carbon (WCAC) prepared from waste citrus peel was investigated by using response surface methodology (RSM) and Box-Behnken design (BBD) statistical procedures. Experiments were carried out as per BBD with three input parameters, the Eosin Y concentration (Conc. : 30~50 mg/L), the solution temperature (Temp. : 293~313 K), and the adsorbent dose (Dose : 0.05~0.15 g/L). Regression analysis showed a good fit of the experimental data to the second-order polynomial model with coefficients of the determination ($R^2$) value of 0.9851 and P-value (Lack of fit) of 0.342. An optimum dye uptake of 59.3 mg/g was achieved at the dye concentration of 50 mg/L, the temperature of 333 K, and the adsorbent dose of 0.1056 g. The adsorption process of Eosin Y by WCAC can be well described by the pseudo second order kinetic model. The experimental data followed the Langmuir isotherm model.

반응 표면법(RSM)과 Box-Behnken 설계(BBD) 통계 방법을 사용하여 폐감귤박으로 만든 활성탄(WCAC)에 의한 염료 Eosin Y의 흡착을 검토하였다. 실험은 Eosin Y의 농도(Conc. : 30~50 mg/L), 용액 온도(Temp. : 293~313 K) 및 흡착제 투여량(Dose : 0.05~0.150 g/L)의 3가지 입력 변수를 가진 BBD에 따라 수행하였다. 염료 Eosin Y 제거에 대해 얻어진 2차 다항식 모델의 회귀분석 결정계수($R^2$) 값이 0.9851이고 적합성 결여(Lack of fit)의 p 값은 0.342로 실험 데이터는 2차 다항식 모델에 잘 부합하였다. 염료 농도 50 mg/L, 온도 333 K 및 흡착제 투여량 0.1056 g에서 최적 염료 흡착량 59.3 mg/g이 얻어졌다. WCAC에 의한 Eosin Y의 흡착공정은 유사 2차 속도식에 의해 잘 기술되었으며, 등온 실험결과는 Langmuir 모델식을 따랐다.

Keywords

References

  1. S. S. Azhar, A. G. Liew, D. Suhardy, K. F. Hafiz, and M. D. I. Hatim, Dye removal from aqueous solution by using adsorption on treated sugarcane bagasse, Am. J. Appl. Sci., 2, 1499-1503 (2005). https://doi.org/10.3844/ajassp.2005.1499.1503
  2. G. Crini, Non-conventional low-cost adsorbents for dye removal: A review, Bioresour. Technol., 97, 1061-1085 (2006). https://doi.org/10.1016/j.biortech.2005.05.001
  3. C. Namasivayam, N. Muniasamy, K. Gayatri, M. Rani, and K. Ranganathan, Removal of dyes from aqueous solutions by cellulo- sic waste orange peel, Bioresour. Technol., 57, 37-43 (1996). https://doi.org/10.1016/0960-8524(96)00044-2
  4. M. Arami, N. Y. Limaee, N. M. Mahmoodi, and N. S. Tabrizi, Removal of dyes from colored textile wastewater by orange peel adsorbent: Equilibrium and kinetic studies, J. Colloid Interface Sci., 288, 371-376 (2005). https://doi.org/10.1016/j.jcis.2005.03.020
  5. V. Gomez, M. S. Larrechi, and M. P. Callao, Kinetic and adsorp- tion study of acid dye removal using activated carbon, Chemosphere, 69, 1151-1158 (2007). https://doi.org/10.1016/j.chemosphere.2007.03.076
  6. R. Ahmad, Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP), J. Hazard. Mater., 171, 767-773 (2009). https://doi.org/10.1016/j.jhazmat.2009.06.060
  7. T. Anitha, K. P. Senthil, and K. K. Sathish, Synthesis of nano-sized chitosan blended polyvinyl alcohol for the removal of eosin yellow dye from aqueous solution, J. Water Process Eng., 13, 127-136 (2016). https://doi.org/10.1016/j.jwpe.2016.08.003
  8. M. G. Lee, S. K. Kam, and K. H. Suh, Adsorption of non-degrad- able eosin Y by activated carbon, J. Environ. Sci. Int., 21, 623-631 (2012). https://doi.org/10.5322/JES.2012.21.5.623
  9. S. Budavari, The Merck Index, 11th ed., Merck & Co., 564, NJ, USA (1996).
  10. S. H. Jang and E. H. Kim, A fundamental study color removal of dyeing wastewater using low cost adsorbents, Korean J. Sanit., 14, 40-45 (1999).
  11. Y. S. Ho and G. Mckay, Batch lead (II) removal from aqueous solution by peat: Equilibrium and kinetics, Process Saf. Environ. Prot., 77, 165-173 (1999). https://doi.org/10.1205/095758299529983
  12. S. Elemen, E. P. Akcakoca Kumbasar, and S. Yapar, Modeling the adsorption of textile dye on organoclay using an artificial neural network, Dyes Pigm., 95, 102-111 (2012). https://doi.org/10.1016/j.dyepig.2012.03.001
  13. S. Nawaz, H. N. Bhatti, T. H. Bokhari, and S. Sadaf, Removal of novacron golden yellow dye from aqueous solutions by low-cost agricultural waste: batch and fixed bed study, Chem. Ecol., 30, 52-65 (2014). https://doi.org/10.1080/02757540.2013.841898
  14. M. Ozacar and I. A. Sengil, Adsorption of metal complex dyes from aqueous solutions by pine sawdust, Bioresour. Technol., 96, 791-795 (2005). https://doi.org/10.1016/j.biortech.2004.07.011
  15. K. S. Low and C. K. Lee, Quaternized rice husk as sorbent for reactive dyes, Bioresour. Technol., 61, 121-125 (1997). https://doi.org/10.1016/S0960-8524(97)00054-0
  16. L. Borah, M. Goswami, and P. Phukan, Adsorption of methylene blue and eosin yellow using porous carbon prepared from tea waste: Adsorption equilibrium, kinetics and thermodynamics study, J. Environ. Chem. Eng., 3, 1018-1028 (2015). https://doi.org/10.1016/j.jece.2015.02.013
  17. M. R. Mafra, L. Igarashi-Mafra, L. Zuim, E. C. Vasques, and M. A. Ferreira, Adsorption of remazol brilliant blue on an orange peel adsorbent, Braz. J. Chem. Eng., 30, 657-665 (2013). https://doi.org/10.1590/S0104-66322013000300022
  18. S. K. Ponnusamy, R. Subramaniam, and S. Kannaiyan, Removal of methylene blue dye from aqueous solution by activated carvon prepared from cashew nut shell as a new low cost adsorbent, Korean J. Chem. Eng., 28, 149-155 (2010).
  19. S. K. Kam, K. H. Kang, and M. G. Lee, Adsorption characteristics of activated carbon prepared from waste citrus peels by KOH activation, Appl. Chem. Eng., 28(6), 649-654 (2017). https://doi.org/10.14478/ACE.2017.1073
  20. S. K. Kam, K. H. Kang, and M. G. Lee, Adsorption characteristics of acetone, benzene, and metylmercaptan by activated carbon prepared from waste citrus peel, Appl. Chem. Eng., 28(6), 663-669 (2017). https://doi.org/10.14478/ACE.2017.1074
  21. S. K. Kam, K. H. Kang, and M. G. Lee, Adsorption characteristics of acetone, benzene, and metylmercaptan in the fixed bed reactor packed with activated carbon prepared from waste citrus peel, Appl. Chem. Eng., 29(1), 28-36 (2018). https://doi.org/10.14478/ACE.2017.1094
  22. M. K. Purkait, S. DasGupta, and S. De, Adsorption of eosin dye on activated carbon and its surfactant based desorption, J. Environ. Manage., 76, 135-142 (2005). https://doi.org/10.1016/j.jenvman.2005.01.012
  23. S. Lagergren, About the theory of so-called adsorption of soluble substances, Kunglia Svenska Vetenskapsakademiens Handlingar, 24, 1-39 (1898).
  24. I. Langmuir, The adsorption of gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40, 1361-140 (1918). https://doi.org/10.1021/ja02242a004
  25. H. M. F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57, 385-470 (1906).
  26. A. Demirbas, Agricultural based activated carbons for the removal of dyes from aqueous solutions: A review, J. Hazard. Mater., 167, 1-9 (2009). https://doi.org/10.1016/j.jhazmat.2008.12.114
  27. R. Gong, X. Liu, M. Feng, J. Liang, W. Cai, and N. Li, Comparative study of methylene blue sorbed on crude and monosodium glutamate functionalized sawdust, J. Health Sci., 54, 623-628 (2008). https://doi.org/10.1248/jhs.54.623
  28. M. Hema and S. Arivoli, Comparative study on the adsorption kinetics and thermodynamics of dyes onto acid activated low cost carbon, Int. J. Phys. Sci., 2, 10-17 (2007).
  29. G. O. El-Sayed, Removal of methylene blue and crystal violet from aqueous solutions by palm kernel fiber, Desalination, 272, 225-232 (2011). https://doi.org/10.1016/j.desal.2011.01.025
  30. R. Gong, Y. Ding, M. Li, C. Yang, H. Liu, and Y. Sun, Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution, Dyes Pigm., 64, 187-192 (2005). https://doi.org/10.1016/j.dyepig.2004.05.005
  31. U. R. Lakshmi, V. C. Sreivastava, I. D. Mall, and D. H. Lataye, Rice husk ash as an effective adsorbent: evaluation of adsorptive characteristics for indigo carmine dye, J. Environ. Manage., 90, 710-720 (2009). https://doi.org/10.1016/j.jenvman.2008.01.002
  32. K. Porkodi and K. V. Kumar, Equilibrium, kinetics and mechanism modeling and simulation of basic and acid dyes sorption onto jute fiber carbon: Eosin yellow, malachite green, crystal violet single component systems, J. Hazard. Mater., 143, 311-327 (2007). https://doi.org/10.1016/j.jhazmat.2006.09.029
  33. G. Annadurai, R. S. Juang, and D. J. Lee, Use of cellulose-based wastes for adsorption of dyes from aqueous solutions, J. Hazard. Mater., 92, 263-274 (2002). https://doi.org/10.1016/S0304-3894(02)00017-1
  34. R. Sivaraj, C. Namasivayam, and K. Kadirvelu, Orange peel as an adsorbent in the removal of Acid Violet 17 (acid dye) from aqueous solutions, Waste Manag., 21, 105-110 (2001). https://doi.org/10.1016/S0956-053X(00)00076-3