• Title/Summary/Keyword: Protocol & Security Systems

Search Result 410, Processing Time 0.029 seconds

Privacy-Preserving NFC-Based Authentication Protocol for Mobile Payment System

  • Ali M. Allam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1471-1483
    • /
    • 2023
  • One of the fastest-growing mobile services accessible today is mobile payments. For the safety of this service, the Near Field Communication (NFC) technology is used. However, NFC standard protocol has prioritized transmission rate over authentication feature due to the proximity of communicated devices. Unfortunately, an adversary can exploit this vulnerability with an antenna that can eavesdrop or alter the exchanged messages between NFC-enabled devices. Many researchers have proposed authentication methods for NFC connections to mitigate this challenge. However, the security and privacy of payment transactions remain insufficient. We offer a privacy-preserving, anonymity-based, safe, and efficient authentication protocol to protect users from tracking and replay attacks to guarantee secure transactions. To improve transaction security and, more importantly, to make our protocol lightweight while ensuring privacy, the proposed protocol employs a secure offline session key generation mechanism. Formal security verification is performed to assess the proposed protocol's security strength. When comparing the performance of current protocols, the suggested protocol outperforms the others.

Improved RFID Mutual Authentication Protocol using One-Time Pad and One-Time Random Number Based on AES Algorithm (OTP와 일회성 난수를 사용한 AES 알고리즘 기반의 개선된 RFID 상호 인증 프로토콜)

  • Yun, Tae-Jin;Oh, Se-Jin;Ahn, Kwang-Seon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.11
    • /
    • pp.163-171
    • /
    • 2011
  • Because RFID systems use radio frequency, they have many security problems such as eavesdropping, location tracking, spoofing attack and replay attack. So, many mutual authentication protocols and cryptography methods for RFID systems have been proposed in order to solve security problems, but previous proposed protocols using AES(Advanced Encryption Standard) have fixed key problem and security problems. In this paper, we analyze security of proposed protocols and propose our protocol using OTP(One-Time Pad) and AES to solve security problems and to reduce hardware overhead and operation. Our protocol encrypts data transferred between RFID reader and tag, and accomplishes mutual authentication by one time random number to generate in RFID reader. In addition, this paper presents that our protocol has higher security and efficiency in computation volume and process than researched protocols and S.Oh's Protocol. Therefore, our protocol is secure against various attacks and suitable for lightweight RFID tag system.

An Efficient and Reliable Authentication Protocol for Password-based Systems (패스워드 기반 시스템을 위한 효율적이고 안전한 인증 프로토콜의 설계 및 검증)

  • 권태경;강명호;송주석
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.7 no.2
    • /
    • pp.27-42
    • /
    • 1997
  • We propose a new authentication and key distribution protocol which is efficient and reliable for password-based systems. Various guessing attacks have been detected in applying conventional protocols to the password-based systems and additional overheads have been made in refined protocols to defeat those attacks. Using a one-time pad and a strong hash function, our proposed protocol promotes reliability and efficiency. Compared with other protocols, our protocol is secure against various protocol attacks including guessing attacks. In addition, this protocol is efficient in reducing communication and computation costs.

An Improved Lightweight Two-Factor Authentication and Key Agreement Protocol with Dynamic Identity Based on Elliptic Curve Cryptography

  • Qiu, Shuming;Xu, Guosheng;Ahmad, Haseeb;Xu, Guoai;Qiu, Xinping;Xu, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.978-1002
    • /
    • 2019
  • With the rapid development of the Internet of Things, the problem of privacy protection has been paid great attention. Recently, Nikooghadam et al. pointed out that Kumari et al.'s protocol can neither resist off-line guessing attack nor preserve user anonymity. Moreover, the authors also proposed an authentication supportive session initial protocol, claiming to resist various vulnerability attacks. Unfortunately, this paper proves that the authentication protocols of Kumari et al. and Nikooghadam et al. have neither the ability to preserve perfect forward secrecy nor the ability to resist key-compromise impersonation attack. In order to remedy such flaws in their protocols, we design a lightweight authentication protocol using elliptic curve cryptography. By way of informal security analysis, it is shown that the proposed protocol can both resist a variety of attacks and provide more security. Afterward, it is also proved that the protocol is resistant against active and passive attacks under Dolev-Yao model by means of Burrows-Abadi-Needham logic (BAN-Logic), and fulfills mutual authentication using Automated Validation of Internet Security Protocols and Applications (AVISPA) software. Subsequently, we compare the protocol with the related scheme in terms of computational complexity and security. The comparative analytics witness that the proposed protocol is more suitable for practical application scenarios.

Fuzzy Controller Design for Selecting the Agent of Contract Net Protocol (계약망 프로토콜의 에이전트 선택을 위한 퍼지 컨트롤러 설계)

  • 서희석;김희완
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.2
    • /
    • pp.251-260
    • /
    • 2004
  • As the importance and the need for network security is increased, many organization uses the various security systems. They enable to construct the consistent integrated security environment by sharing the vulnerable information among firewall, intrusion detection system, and vulnerable scanner. We construct the integrated security simulation environment that can be used by some security system model. In this paper, we have designed and constructed the general simulation environment of network security model composed of multiple IDSs agent and a firewall agent which coordinate by CNP (Contract Net Protocol). The CNP, the methodology for efficient integration of computer systems on heterogeneous environment such as distributed systems, is essentially a collection of agents, which cooperate to resolve a problem. We compare the selection algorithm in the CPN with the Fuzzy Controller for the effective method to select the agents.

  • PDF

Security Weaknesses in Harn-Lin and Dutta-Barua Protocols for Group Key Establishment

  • Nam, Jung-Hyun;Kim, Moon-Seong;Paik, Ju-Ryon;Won, Dong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.751-765
    • /
    • 2012
  • Key establishment protocols are fundamental for establishing secure communication channels over public insecure networks. Security must be given the topmost priority in the design of a key establishment protocol. In this work, we provide a security analysis on two recent key establishment protocols: Harn and Lin's group key transfer protocol and Dutta and Barua's group key agreement protocol. Our analysis shows that both the Harn-Lin protocol and the Dutta-Barua protocol have a flaw in their design and can be easily attacked. The attack we mount on the Harn-Lin protocol is a replay attack whereby a malicious user can obtain the long-term secrets of any other users. The Dutta-Barua protocol is vulnerable to an unknown key-share attack. For each of the two protocols, we present how to eliminate their security vulnerabilities. We also improve Dutta and Barua's proof of security to make it valid against unknown key share attacks.

An Anonymous Authentication with Key-Agreement Protocol for Multi-Server Architecture Based on Biometrics and Smartcards

  • Reddy, Alavalapati Goutham;Das, Ashok Kumar;Yoon, Eun-Jun;Yoo, Kee-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3371-3396
    • /
    • 2016
  • Authentication protocols for multi-server architectures have gained momentum in recent times due to advancements in computing technologies and associated constraints. Lu et al. recently proposed a biometrics and smartcards-based authentication scheme for multi-server environment. The careful analysis of this paper demonstrates Lu et al.'s protocol is susceptible to user impersonation attacks and comprises insufficient data. In addition, this paper proposes an improved authentication with key-agreement protocol for multi-server architecture based on biometrics and smartcards. The formal security of the proposed protocol is verified using the widely accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool to ensure that our protocol can withstand active and passive attacks. The formal and informal security analysis, and performance analysis sections determines that our protocol is robust and efficient compared to Lu et al.'s protocol and existing similar protocols.

Dynamic Copy Security Protocol In Real-Time Database Systems (실시간 데이터베이스 시스템에서의 동적 복사 보안 프로토콜)

  • Park, Su-Yeon;Lee, Seung-Ryong;Jeong, Byeong-Su;Seung, Hyeon-U
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.8
    • /
    • pp.955-963
    • /
    • 1999
  • 다단계 보안 실시간 데이타베이스 시스템은 데이타베이스의 일관성 유지와 실시간 요구인 마감시간의 만족, 그리고 기밀성을 띤 데이타가 노출될 수 있는 비밀채널(covert-channel)의 방지라는 요구사항을 모두 만족해야 한다. 기존의 SRT-2PL(Secure Real-Time 2 Phase Locking)은 원본과 복사본으로 데이타 객체를 분리시켜 다른 등급간에 불간섭(non-interference)을 유지하여 비밀채널의 방지를 가능하게 하였으나, 복사본이 모든 데이타 객체에 대해 항상 존재하므로 메모리의 낭비가 있을 수 있고, 복사본의 갱신을 위한 갱신 큐의 관리에 따르는 오버헤드와 그에 따른 예측성 결여라는 문제점을 갖고 있다. 이를 개선하기 위하여 본 논문에서는 다단계 보안 실시간 데이타베이스 시스템의 요구사항을 모두 만족하는 동적 복사 프로토콜을 제안한다. 동적 복사 프로토콜은 로킹 기법을 기초로 동작하고, 트랜잭션의 작업에 따라 동적으로 복사본을 생성하고 삭제한다. 모의 실험 결과 제안한 동적 복사 프로토콜은 비밀채널을 방지하고 동적인 복사본의 생성으로 SRT-2PL의 단점인 메모리 낭비를 줄일 수 있으며, 예측성을 높여 마감시간 오류율을 감소시켰다.Abstract Concurrency control of real-time secure database system must satisfy not only logical data consistency but also timing constraints and security requirements associated with transactions. These conflicting natures between timing constraints and security requirements are often resolved by maintaining several versions(or secondary copies) on the same data items. In this paper, we propose a new lock-based concurrency control protocol, Dynamic Copy Security Protocol, ensuring both two conflicting requirements. Our protocol aims for reducing the storage overhead of maintaining secondary copies and minimizing the processing overhead of update history. Main idea of our protocol is to keep a secondary copy only when it is needed to resolve the conflicting read/write operations in real time secure database systems. For doing this, a secondary copy is dynamically created and removed during a transaction's read/write operations according to our protocol. We have also examined the performance characteristics of our protocol through simulation under different workloads while comparing the existing real time security protocol. The results show that our protocol consumed less storage and decreased the missing deadline transactions.

A Practical Privacy-Preserving Cooperative Computation Protocol without Oblivious Transfer for Linear Systems of Equations

  • Kang, Ju-Sung;Hong, Do-Won
    • Journal of Information Processing Systems
    • /
    • v.3 no.1
    • /
    • pp.21-25
    • /
    • 2007
  • We propose several practical SMC protocols for privacy-preserving cooperative scientific computations. We consider two important scientific computations which involve linear equations: the linear systems of equations problem and the linear least-square problem. The protocols proposed in this paper achieve acceptable security in the sense of Du-Zhan's paradigm and t-wise collusion-resistance, and their communication complexity is O(tm), where t is a security parameter and m is the total number of participants. The complexity of our protocol is significantly better than the previous result O($m^2/{\mu}$) of [4], in which the oblivious transfer protocol is used as an important building block.

A Two-Way Authentication Protocol Based on Hash Collision for Unmanned Systems in Tactical Wireless Networks (전술 무선 네트워크에서 무인체계를 위한 해시 충돌 기반의 양방향 인증 프로토콜)

  • Lee, Jong-kwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.4
    • /
    • pp.729-738
    • /
    • 2019
  • In this paper, we propose two-way authentication protocol between unmanned systems in tactical wireless networks in which long distance communications are not guaranteed due to a poor channel conditions. It is assumed that every unmanned systems have same random data set before they put into combat. The proposed protocol generates authentication code(AC) using random data that causes hash collision. The requester for authentication encrypts the materials such as their identifier, time-stamp, authentication code with the secret key. After then the requester transmits the encrypted message to the receiver. The receiver authenticates the requester by verifying the authentication code included in the request message. The performance analysis of the proposed protocol shows that it guarantees the security for various attack scenarios and efficiency in terms of communication overhead and computational cost. Furthermore, we analyzed the effect of the parameter values of the proposed protocol on the performance and suggest appropriate parameter value selection guide according to the level of security requirement.