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Abstract 
 

Key establishment protocols are fundamental for establishing secure communication channels 

over public insecure networks. Security must be given the topmost priority in the design of a 

key establishment protocol. In this work, we provide a security analysis on two recent key 

establishment protocols: Harn and Lin’s group key transfer protocol and Dutta and Barua’s 

group key agreement protocol. Our analysis shows that both the Harn-Lin protocol and the 

Dutta-Barua protocol have a flaw in their design and can be easily attacked. The attack we 

mount on the Harn-Lin protocol is a replay attack whereby a malicious user can obtain the 

long-term secrets of any other users. The Dutta-Barua protocol is vulnerable to an unknown 

key-share attack. For each of the two protocols, we present how to eliminate their security 

vulnerabilities. We also improve Dutta and Barua’s proof of security to make it valid against 

unknown key share attacks. 
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1. Introduction 

Key establishment protocols allow two or more communicating parties to establish their 

common secret key called a session key. Establishment of session keys is one of the 

fundamental cryptographic operations and provides a typical way of building secure 

communication channels over insecure public networks. Traditionally, protocols which can be 

run by an arbitrary number of parties are called group (or conference) key establishment 

protocols [1][2][3][4][5], in contrast to protocols which can be run only by two or three parties. 

In the group setting, a session key is also called a group key. Key establishment protocols are 

often classified into two types: key agreement protocols and key transfer protocols. Key 

agreement protocols require each participant to contribute their parts to the final form of the 

session key, whereas key transfer protocols allow one trusted entity to generate the session key 

and then transfer it to all participants. 

The first priority in designing a key establishment protocol is placed on ensuring the 

security of the protocol. Even if it is computationally infeasible to break the cryptographic 

algorithms used, the whole system becomes vulnerable to all manner of attacks if the keys are 

not securely established. But the experience shows that the design of secure key establishment 

protocols is notoriously difficult. Over the last decades, a number of protocols have been 

found to be insecure years after they were published [6][7][8][9][10]. Thus, key establishment 

protocols must be subjected to a thorough scrutiny before they can be deployed into a public 

network which might be controlled by an adversary. 

The fundamental security attribute that a key establishment protocol is expected to achieve 

is implicit key authentication. Informally, this attribute means that no one other than the 

intended parties can compute the session key. A key establishment protocol achieving implicit 

key authentication is said to be authenticated, and is a primitive of crucial importance in much 

of modern cryptography and network security. Authenticated key establishment inevitably 

requires some secret information to be established between the communicating parties before 

the protocol is ever executed. The pre-established secrets are commonly known as long-term 

keys. Implicit key authentication can be achieved only when the secrecy of every long-term 

key is guaranteed.  As soon as the long-term key of a party is disclosed, all the protocol 

sessions that the party participates become completely insecure. It is thus crucial that 

long-term keys must not be revealed under any circumstances. 

Resistance to unknown key-share (UKS) attacks is among many desirable security attributes 

that key establishment protocols should achieve. An adversary AU  is said to succeed in an 

UKS attack if the attack results in two parties iU  and jU  such that: (1) iU  and jU  have 

computed the same session key; (2) iU  is unaware of the “key share” with jU  and falsely 

believes its key is shared with AU ; and (3) jU  correctly believes its key is shared with iU . As 

implied by this definition, the adversary AU  need not obtain any session key to benefit from 

an UKS attack. The adversary AU  may be able to take advantage of iU ’s false belief in 

various ways if subsequent messages are encrypted or authenticated with the established key 

[11]. UKS attacks were first discussed by Diffie et al. [12] and have been found against many 

key establishment protocols [7][8][13][14][11][15]. 

In this work, we are concerned with the security of two recent key establishment protocols, 

namely the group key transfer protocol due to Harn and Lin [16] and the group key agreement 

protocol due to Dutta and Barua [17]. The Harn-Lin protocol employs Shamir’s secret sharing 
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[18] and assumes a trusted key generation center (KGC) who provides key distribution service 

to its registered users. During registration, KGC issues each user a long-term key which should 

be kept privately by the user.  One of the security claims made for this protocol is that the 

long-term key of each user cannot be learned by other users. But, it turns out that this claim is 

not true. The truth is that the Harn-Lin protocol is vulnerable to a replay attack whereby a 

malicious user, who is registered with KGC, can readily obtain the long-term key of any other 

registered user. We reveal this security vulnerability of the Harn-Lin protocol and then suggest 

a countermeasure against the replay attack. The attack we mount on the Dutta-Barua protocol 

is an UKS attack. The Dutta-Barua protocol is based on the well-known protocol of Burmester 

and Desmedt [1] and requires 2 communication rounds to establish a session key among a 

group of users. This protocol carries a claimed proof of its security in an adversarial model 

which captures UKS attacks. But, the proof simply assumes non-concurrent executions of the 

protocol and so does not capture our UKS attack. Hence, we not only fix the protocol but also 

extend its proof to the concurrent case. The replay attack on the Harn-Lin protocol is given in 

Section 2 while the UKS attack on the Dutta-Barua protocol is given in Section 3. 

2. Harn and Lin’s Group Key Transfer Protocol 

This section investigates the security of Harn and Lin’s group key transfer protocol HL [16]. 

We first review the HL protocol and cryptanalyze it by mounting a replay attack. We then 

show how to fix the protocol by presenting a simple countermeasure against the attack. 

2.1 Protocol Description 

The protocol HL consists of three phases: system initialization, user registration, and key 

distribution. 

System initialization. KGC randomly chooses two safe primes p  and q  (i.e., p  and q  are 

primes such that ( 1) / 2p p    and ( 1) / 2q q    are also primes) and computes n pq . n  is 

made publicly known. 

User registration. Each user is required to register at KGC to subscribe the key distribution 

service. During registration, KGC shares a secret ( ix , iy ) with each user iU  where ix , iy  
*
nZ . 

Key distribution. This phase constitutes the core of the protocol and is performed whenever a 

group of users 1,..., tU U  decide to establish a common session key. 

Step 1. A designated user of the group, called the initiator, sends a key-distribution request to 

KGC. The request carries the list of participating users 1,..., tU U . 

Step 2. KGC broadcasts the participant list 1,..., tU U  in response to the request. 

Step 3. Each user iU , for 1,...,i t , sends a random challenge *
i nr Z  to KGC. 

Step 4. KGC randomly selects a session key k  and constructs by interpolation a t-th degree 

polynomial ( )f x  passing through the ( 1t  ) points: ( 1x , 1 1y r ), ... , ( tx , t ty r ) and ( 0 , k ). 

Next, KGC selects t  additional points 1P , ... , tP  that lie on the polynomial ( )f x . KGC then 

computes 1 1 1( , ,..., , ,..., , ,..., )t t th k U U r r P P  , where h  is a one-way hash function, and 

broadcasts 1 1, ,..., , ,...,t tr r P P  to the users. All computations with respect to ( )f x  are 

performed modulo n . 
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Fig. 1. The protocol HL
+ 

(described from Step 3) 

Step 5. Each iU  constructs the polynomial ( )f x  from the ( 1t  ) points: 1P ,…, tP  and 

( ix , i iy r ). Then iU  recovers the session key (0)k f  and checks the correctness of   in 

the straightforward way. iU  aborts if the check fails. 

Since the above protocol HL focuses on protecting the keying material broadcasted from 

KGC to users, Harn and Lin also present (in Remark 2 of [16]) how HL can be extended to 

provide user authentication and key confirmation. Let HL+
 be the extended version of HL. HL+

 

is constructed from HL by revising Steps 3 and 4 to achieve user authentication and by adding 

Steps 6 and 7 to achieve key confirmation. 

Step 3 (of HL+
). Each user iU , for 1,...,i t , selects a random challenge *

i nr Z , computes 

( , , )i i i ih x y r  , and sends ,i ir  to KGC.  

Step 4 (of HL+
). KGC checks the correctness of each i  in the straightforward way. KGC 

aborts if any of the checks fails. Otherwise, KGC continues with Step 4 of HL. 

Step 6. Each iU  sends ( , , )i i ih x y k   to KGC. 

Step 7. After receiving all i ’s, KGC sends 1( , , , ,..., )i i i th x y k U U   to iU  for 1,...,i t . 

All other parts (including the phases of system initialization and user registration) remain 

unchanged between HL and HL+
. A high level description of HL+

 is given in Fig. 1. 

2.2 Replay Attack 

The fundamental security goal of a key establishment protocol is to ensure that no one other 

than the intended users can compute the session key. In the cases of HL and HL+
, this goal can 
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be achieved only when the secrecy of every ( ix , iy ) is guaranteed. As soon as ( ix , iy ) is 

disclosed, all the protocol sessions that iU  participates become completely insecure. Thus, it 

is important that ix ’s and iy ’s must not be revealed under any circumstances.  

Harn and Lin claim that their protocols prevent the secret ( ix , iy ) of each iU  from being 

disclosed to other users, either insiders or outsiders (Theorem 3 of [16]). However, we found 

that this claim is wrong. Suppose that a malicious registered user jU  has a goal of finding out 

iU ’s secret ( ix , iy ). Then jU  can achieve its goal by mounting the following attack against 

the protocol HL+
.  

Step 0. As a preliminary step, the adversary jU  eavesdrops on a protocol session, where iU  

participates, and stores the message ,i ir  sent by iU  in Step 3 of the session. 

jU  then initiates two (either concurrent or sequential) sessions S  and S   of the protocol 

alleging that the participants of both sessions are iU  and jU . Once KGC responds with the 

participant list ,i jU U  in Step 2 of each session, jU  performs Step 3 of the sessions while 

playing dual roles of jU  itself and the victim iU .  

Step 3 of S . jU  sends the eavesdropped message ,i ir  to KGC as if the message is from 

iU . But, jU  behaves honestly in sending its own message; jU  selects a random *
j nr Z , 

computes ( , , )j j j jh x y r  , and sends ,j jr  to KGC.  

Step 3 of S  . jU  replays the messages ,i ir  and ,j jr . That is, jU  sends ,i ir  as iU ’s 

message and sends ,j jr  as its own message.  

KGC cannot detect any discrepancy since i  and j  are both valid. Note that KGC does not 

check for message replays. Hence, KGC will distribute the keying materials for the sessions. 

Let 2
2 1( )f x a x a x k    and 2

2 1( )f x a x a x k       be the polynomials constructed by KGC 

respectively in sessions S  and S  . As soon as receiving the keying materials, jU  derives 

these polynomials as specified in Step 5 of the protocol. Now let 

2
2 2 1 1

( ) ( ) ( )

( ) ( ) .

g x f x f x

a a x a a x k k

 

       
  

Then, ( ) 0ig x   and ( ) 0jg x   since ( ) ( )i i i if x f x y r    and ( ) ( )j j j jf x f x y r   . This 

implies that ix  and jx  are the two roots of the quadratic equation 2
2 2 1 1( ) ( )a a x a a x       

0k k  . It follows that 

2
2 2 1 1 2 2( ) ( ) ( )( )( ).i ja a x a a x k k a a x x x x             

Since 2 2( ) i jk k a a x x    , we get 

1 1
2 2( ) ( ).i jx x a a k k                                                        (1) 

Here, the computations are done modulo n . Once ix  is obtained as in Eq. (1), iy  can be easily 
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computed from ( )i i if x y r  . The value of iy  is different depending on whether i iy r n   

or i iy r n  . 

( ) if

( ( ) ) otherwise.

i i i i
i

i i

f x r y r n
y

f x n r

  
 

 
 

i  can serve as a verifier for checking which of the two cases is true.  Using ( ix , iy ) obtained 

as above, jU  is able to complete the protocol without the attack being noticed.  

The above attack assumes, for ease of exposition, that KGC allows for the key 

establishment between two parties. But, this assumption is not necessary. If two-party key 

establishments are not allowed, jU  can collude with another malicious user kU  to mount a 

slight variant of the attack. Assume two sessions of the protocol, in both of which the 

participants are iU , jU  and kU . If jU  and kU  collude together and run the two sessions as in 

the attack above, they can construct a cubic polynomial  3 2
3 3 2 2( ) ( ) ( )g x a a x a a x        

1 1( )a a x k k     such that ( ) ( ) ( ) 0i j kg x g x g x   .  Then, with jx  and kx  in hand, the 

adversaries can compute ix  as 

1 1 1
3 3( 1) ( ) ( )i j kx x x a a k k        

and thereby can determine iy  as above. 

So far, we have seen the vulnerability of the protocol HL+
. As can be expected, the basic 

protocol HL also suffers from the same vulnerability. The attack against HL is essentially 

similar to the above attack, and its description is omitted due to the similarity. 

Disclosure of a long-term key can easily lead to a devastating result. Suppose, for example, 

that the malicious user jU  gets unregistered with KGC after obtaining the long-term secret 

( ix , iy ) of iU . Then jU , without reregistering, can completely compromise all the sessions 

that iU  will participate in the future. 

2.3 Countermeasure 

The security failure of HL+
 (and HL) is attributed to one obvious flaw in the protocol design: 

the messages sent by users in Step 3 can be replayed in different protocol sessions. This flaw 

allows our adversary jU  to send the same random challenges twice and thereby to construct a 

quadratic polynomial ( )g x  such that ( ) ( ) 0i jg x g x  . Fortunately, message replays can be 

effectively prevented if Steps 2 and 3 of the protocols are revised as follows:  

Step 2 (revision). KGC selects a random *
0 nr Z  and broadcasts it along with the participant 

list 1,..., tU U .  

Step 3 (revision). Each user iU , for 1,...,i t , selects a random *
i nr Z , computes ( ,i ih x   

0 1, , , ,..., )i i ty r r U U , and sends ,i ir  to KGC.  

The other steps of the protocols remain unchanged except that in Step 4 of HL, KGC has to 

check the correctness of i , for 1,...,i t , before starting to construct the polynomial ( )f x . As 

a result of our modification, the protocols HL and HL+
 become identical except that HL+

 

requires two additional steps (Steps 6 and 7) for key confirmation. With the modification 
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applied, the message ,i ir  eavesdropped in a protocol session can no longer be replayed in 

any other sessions. Hence, our attack is not valid against the improved protocols. 

3. Dutta and Barua’s Group Key Agreement Protocol 

As previously mentioned, Dutta and Barua’s group key agreement protocol DB [17] is 

vulnerable to an unknown key-share attack. We here reveal this security problem with the 

protocol DB and show how to address it. We also interpret our attack in the context of the 

formal proof model to invalidate the claimed proof of security for DB.  

3.1 Protocol Description 

Let U  be a set of all users who can participate in the protocol DB. Any subset of U  may 

decide at any point to establish a session key. Thus, a user may have several instances involved 

in distinct, possibly concurrent, protocol sessions. The protocol DB requires each user iU  to 

maintain a counter ic  whose value indicates the number of instances created by iU . The 

counters of users are used in defining session identifiers, as specified in the protocol 

description below.  The network where the users interact is assumed to be fully controlled by 

an active adversary who may read, intercept and fabricate any messages at will. The protocol 

is authenticated using signatures. Let   = ( KGen , Sign , Vrfy ) be a signature scheme which is 

existentially unforgeable under an adaptive chosen message attack. Here, KGen  is the key 

generation algorithm, Sign  is the signature generation algorithm, and Vrfy  is the signature 

verification algorithm. Before the protocol is ever executed, the following initialization should 

be performed to generate system parameters and long-term keys.  

 The users in U  choose a cyclic multiplicative group of prime order q  and fix an arbitrary 

generator g  of  the cyclic  group. 

 Each user iU U  generates its long-term verification/signing keys ( iVK , iSK ) by running 

KGen . 

 Each iU U  sets its counter ic  to 0. ( ic is incremented whenever a new instance of iU  is 

created.)  

If there are n  participants 1,..., nU U , DB proceeds as follows. (Throughout the protocol 

description, all indices are to be taken in a cycle, i.e., 1 1nU U  , etc.)  

Round 1: Each iU  chooses a random *
i qx Z , computes ix

iy g  and Sign ( |1| |
ii SK i iU y   

)ic , and sends Exp |1| | |i i i i iU y c   to 1iU   and 1iU  . Here, the symbol | denotes the string 

concatenation operation. 

Round 2:  Upon receiving 1Expi  and 1Expi , iU  checks that 
1 1 1 1 1Vrfy ( |1| | , )

iPK i i i iU y c 
      

1  and 
1 1 1 1 1Vrfy ( |1| | , ) 1

iPK i i i iU y c 
      . iU  aborts if either of two verifications fails. 

Otherwise, iU  computes 1
ixL

i iK y  , 1
ixR

i iK y  , /R L
i i iY K K , and Sign ( | 2 | | )

ii SK i i iU Y c  . 

Then iU  broadcasts Div | 2 | | |i i i i iU Y c  .  

Key computation:  Each iU  checks that Vrfy ( | 2 | | , ) 1
jPK j j j jU Y c    for all {1,..., }\{ }j n i . 

iU  aborts if any of the verifications fails. Otherwise, iU  computes     
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R R
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    1 1 2 .R R
i n i n i nK Y K       

iU  checks that 1
R
i nK    is equal to L

iK . If not, iU  aborts. Otherwise, iU  computes the 

session key sk  as  

1 2 2 3 1

1 2

n

R R R
n

x x x x x x

sk K K K

g
 

 



  

and defines the session identifier iSID  as 1 1( , ),..., ( , )i n nSID U c U c .  

Fig. 2 shows an execution of the protocol DB when there are 4 participants 1 2 3, ,U U U  and 4U . 

1 *
1 1,

x
R qy g x Z  8

1 2 3 4Protocol participants: , , ,U U U U

1U1U 2U2U 4U4U
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2 2,

x
R qy g x Z  3 *
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Fig. 2. An execution of the protocol DB 

3.2 Unknown Key-Share Attack 

We here mount an UKS attack against the protocol DB described above. Consider a protocol 

session S  to be run by the users of group 1 2 3{ , , }G U U U  Now suppose that 1U  and 2U  

accept the invitation by the malicious adversary AU  to participate in a new concurrent session 
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S  , thus forming the group 1 2{ , , }AG U U U  . Let S
iU  and S

iU
  denote iU ’s instances 

participating respectively in S  and S  . Then the goal of the adversary AU  is to trick 1
SU
  and 

2
SU
  into establishing a session key with 3U . The attack works as follows:  

1. As session S  starts, 1
SU , 2

SU  and 3U  will send their first messages 1 1 1 1 1Exp |1| | |U y c  , 

2 2 2 2 2Exp |1| | |U y c   and 3 3 3 3 3Exp |1| | |U y c  , respectively. The adversary AU  

intercepts 3Exp  while blocking 1Exp  and 2Exp  from reaching 3U . In other words, 1
SU  

and 2
SU  never receive 3Exp  and 3U  receives neither 1Exp  nor 2Exp .  

2. As a participant of session S  , the adversary AU  sends the message 3Exp |1| |A AU y  

|A Ac  to 1
SU
  and 2

SU
  and receives the messages 1 1 1 1 1Exp |1| | |U y c     and 2 2Exp |U   

2 2 21| | |y c     respectively from 1
SU
  and 2

SU
 . Notice that ExpA  contains 3y  (which is 

generated by 3U  and is obtainable from 3Exp ). We mean by this that AU  has computed its 

signature A  as 3Sign ( |1| | )
AA SK A AU y c  .  

3. AU  forwards the received messages 1Exp  and 2Exp  to 3U  as if they are sent by 1
SU  and 

2
SU , respectively. These messages will pass 3U ’ s verification since 1  (resp. 2 ) is a 

valid signature on 1 1 1|1| |U y c   (resp. 2 2 2|1| |U y c  ) under the verification key 1VK  (resp. 

2VK ). Hence, 3U  will send out its second message 3 3 3 3 3Div | 2 | | |U Y c  . If we let 

1

1y =g
x  and 2

2y =g
x , then clearly 

3 1 2 3

3 .
x x x x

Y g
 

  

4. AU  intercepts 3Div , computes 3Sign ( | 2 | | )
AA SK A AU Y c   (using 3Y  from 3U ), and sends 

3Div | 2 | | |A A A AU Y c   to 1
SU
  and 2

SU
 . Meanwhile, 1

SU
  and 2

SU
  will send AU  their 

second messages 1 1 1 1 1Div | 2 | | |U Y c      and 2 2 2 2 2Div | 2 | | |U Y c      where 

1 2 3 1 2 3 1 2

1 2and .
x x x x x x x x

Y g Y g
          

5. AU  forwards 11Div  and 2Div  to 3U  as if they are from 1
SU  and 2

SU , respectively. These 

messages will pass 3U ’s verifications since the signatures 1   and 2   are both valid and 

3
LK  is equal to 2 1 3

RY Y K  , where 2 3

3
x xLK g


  and 3 1

3
x xRK g


 . 

6. Consequently, 1
SU
 , 2

SU
  and 3U  will compute the same session key 

1 2 2 3 3 1 .
x x x x x x

sk g
    

  

At the end of the attack: (1) 1U , 2U  and 3U  have computed the same session key sk ; (2) 

1U  and 2U  believe that sk  is shared with AU , while in fact it is shared with 3U ; (3) 3U  

believes that sk  is shared with 1U  and 2U . This shows that the protocol DB is vulnerable to 

an UKS attack when two protocol sessions are running concurrently with some joint 

participants. 

3.3 Attacking in the Model 

The protocol DB carries a claimed proof of security in a formal model of communication and 

adversarial capabilities. The proof model used for DB is a typical one [3] and allows the 
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adversary A  to access all the standard oracles: Send, Execute, Reveal, Corrupt and Test. 
Any key establishment protocol proven secure in such a model should be resistant to UKS 

attacks [8]. But as we have shown, the DB protocol is vulnerable to an UKS attack. The 

existence of our attack means, in the context of the proof model, that there exists an adversary 

A  whose advantage in attacking protocol DB is 1 , or in other words, there exists an adversary 

A  who can distinguish, with probability 1 , random keys from real session keys. The 

construction of such an A  is rather straightforward from the attack above, and its brief 

description follows: 

Signing-key disclosure: First, A  obtains AU ’s long-term signing key ASK  by querying 

Corrupt( AU ).  

Initiation: Next, A  asks Send queries required to initiate two protocol sessions S : 

1 2 3{ , , }G U U U  and S  : 1 2{ , , }AG U U U  . For example, a query of the form Send( 1U , *, 

2 , AU U ) prompts an unused instance * of 1U  to initiate the protocol with 2U  and AU . But, 

no instance of AU  needs to be asked this form of Send query because A  will simulate by 

itself the actions of AU .   

Run: Now, A  runs the two sessions in the exact same way as AU  did in the above-described 

attack. Note that A  can perfectly simulate AU ’s attack by asking Send queries and by 

using the disclosed long-term signing key ASK . Let S
iU  and S

iU  be iU ’s instances 

participating respectively in S  and S  . Then, as in the attack above, the instances 1
SU
 , 2

SU
  

and 3
SU  will eventually accept the same session key sk .  

Session-key disclosure: A  obtains the session key sk  by querying either Reveal( 1
SU
 ) or 

Reveal( 2
SU
 ). 

Test: The instance 3
SU  is fresh because (1) no Corrupt query has been asked for any of the 

users 1U , 2U  and 3U  and (2) no Reveal query has been made for any of the instances 1
SU , 

2
SU  and 3

SU . Thus, A  may test (i.e., ask a Test query against) the instance 3
SU . Since A  

knows the value of sk , the probability that A  guesses correctly the bit b  used by the Test 

oracle is 1 and so is the advantage of A  in attacking DB.  

3.4 Countermeasure 

The vulnerability of DB to the UKS attack is attributed to the fact that 3U  cannot distinguish 

between the signatures generated by 1
SU  (resp. 2

SU ) and those generated by 1
SU
  (resp. 2

SU
 ). 

Given this observation, it is not hard to figure out how to fix the protocol. As a  simple 

countermeasure against the attack, we recommend to change the computations of the 

signatures i  and i  to 

1

1

Sign ( |1| | | | | ),

Sign ( | 2 | | | | | ).

i

i

i SK i i i n

i SK i i i n

U y c U U

U Y c U U





 

 
 

The identities of all protocol participants are now included as part of the messages to be signed. 

With this modification applied, the signatures from 1
SU
  and 2

SU
  can no longer pass 3U ’s 

verification since the participants are different between the two sessions S  and S  . Hence, the 

UKS attack is not valid against the improved protocol. 
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3.5 Security Proof 

Since our UKS attack can be simulated in the proof model used for DB, there must be some 

problems with the security proof  given by Dutta and Barua [17]. The problem with Dutta and 

Barua’s proof is that it simply assumes non-concurrent executions of the protocol. We here 

prove the security of our improved protocol DB +
 by extending Dutta and Barua’s proof to the 

concurrent case. As in [17], we use UP to denote the unauthenticated version of the protocol 

DB (or DB +
). The following theorem presents our result on the security of DB +

. It claims that 

DB +
 is secure against active adversaries under the security of UP against passive adversaries. 

(All the notations that are not defined here are taken over from [17].) 

Theorem 1. For any adversary who asks Eq  Execute queries and Sq  Send queries with 

time complexity t , its advantage in breaking the security of the protocol DB +
 is upper 

bounded by  

DB
Adv 

( , , )E St q q Q
UPAdv ( ,1)t P Adv

( )t  

where E SQ q q   and P  is a polynomial-sized set of potential participants. 

Proof. We prove the theorem by finding a reduction from the security of protocol DB +
 to 

the security of protocol UP. As shown in [17], the unauthenticated protocol UP is provably 

secure against a passive adversary. Assuming an active adversary A  who attacks protocol 

DB +
, we construct a passive adversary A  that uses A  in its attack on UP. As in a typical 

reductionist approach, the adversary A  simply runs A  as a subroutine and answers the 

oracle queries of A  on its own. The idea in constructing A  is to use the fact that in attacking 

DB +
, the adversary A  is able to relay messages only between user instances with the same 

set of participants and counters. Based on this idea, the adversary A  obtains a transcript T  of 

UP for each unique combination of participants and nonces by calling its own Execute oracle, 

and generates a transcript T   of DB +
 by patching T  with appropriate signatures. A  then uses 

the messages of T   in answering A ’s Send queries directed to user instances which have 

the same participants and nonces as used in generating T  . In this way, A  is limited to 

sending messages already contained in T  , unless signature forgery occurs. In essence, A  is 

ensuring that A ’s capability of attacking protocol DB +
 is demonstrated only on the session 

key associated with the patched transcript T   and thus is translated directly into the capability 

of attacking protocol UP.  

However, there exists a difficulty in constructing the passive adversary A  from the active 

adversary A . Since A  can obtain a private signing key at any time by calling the Corrupt  
oracle, it may send arbitrary - but still valid - messages of its choice (i.e., messages that are not 

contained in the patched transcript T  ) to an instance. The problem in this case is that A  

cannot simulate the actions of the instance because it does not have appropriate internal data 

used by the instance at earlier stage. The exact same problem arises in proving security for the  

compiler of Katz and Yung [3]. The proof for the Katz-Yung compiler circumvents this 

simulation problem by letting A  guess the session in which A  will take advantage of its only 

chance to access the Test oracle. For the guessed session, A  handles the queries of the active 

adversary by calling its own Execute oracle as described above, and for all other sessions, A  

honestly responds by directly executing protocol DB +
 (i.e., without accessing the Execute 

oracle). Our proof follows this approach in extending Dutta and Barua’s proof to the 

concurrent case.  
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The passive adversary A  begins by choosing a random {1,..., }Q   which represents a 

guess of the session for which A  will ask its Test query. A  simulates the queries of the 

active dversary A  as follows: 

Corrupt Queries. These queries are answered in the obvious way. Namely, A  returns the 

long-term signing key iSK  in response to the query Corrupt( iU ). 

Execute Queries. If an Execute query is not the -th  Send/Execute query of A , then A  

simply generates by itself a transcript of an execution of DB +
 and returns this to A . A can do 

this because it knows all the signing keys of users. If an Execute query is the -th  

Send/Execute query of A , A  proceeds exactly as in Dutta and Barua’s simulation of 

Execute queries. 

Send Queries. If a Send query is not the -th  Send/Execute query of A , then A  

simulates on its own the actions of the instance and returns a response as needed. A can do this 

because it knows all the signing keys of users. If a Send query is the -th  Send/Execute 

query of A , A  proceeds exactly as in Dutta and Barua’s simulation of Send queries. 

Reveal Queries. If a Reveal query is asked to an instance simulated by A  itself, then the 

appropriate session key can be computed/returned. Otherwise, A  aborts and outputs a random 

bit since its guess   was incorrect. 

Test Queries. If the Test query is asked to an instance for which A  has asked its single 

Execute query, then A  asks its own Test query and returns the result to A . Otherwise, A  

aborts and outputs a random bit since its guess   was incorrect. 

As long as Forge does not occur and A  correctly guesses  , the above simulation for A  is 

perfect. Let Guess denote the event that A  correctly guesses  . If Forge occurs, A  aborts 

and outputs a random bit. Let Win Guess Forge  . Then, clearly, Pr[ | ] 1 2Succ Win  . 

Now, to derive the statement of Theorem 1, we apply a series of simple modifications to the 

definitional equation 
, ,2Pr [ ] 1UP UPAdv SuccA A   as follows: 

, ,

, ,

, , ,

, ,

, ,

2Pr [ ] 1

2Pr [ ] 2Pr [ ] 1

2Pr [ ] 2Pr [ | ]Pr [ ] 1

2Pr [ ] Pr [ ] 1

2 Pr [ ] Pr [

UP UP

DB DB

DB DB DB

DB DB

DB DB

Adv Succ

Succ Win Succ Win

Succ Win Succ Win Win

Succ Win Win

Succ Forge Guess Forg

A A

A A

A A A

A A

A A
Q

   

     

   

   

 

    

   

   

    

, , ,

, ,

, ,

, ,

] 1

2 Pr [ 2 Pr [ ] Pr [ ] 1

2 Pr [ 1 Pr [ ] 1

1 | 2Pr [ 1 | 1 Pr [ ]

1 1 Pr [ ]

DB DB DB

DB DB

DB DB

DB DB

e

Succ] Succ Forge Guess Forge

Succ] Forge

Succ] Forge

Adv Forge

A A A

A A

A A

A A

Q Q

Q Q

Q Q

Q Q

     

   

   

   



       

    

   

   

 

It follows that 
, , ,

Pr [ ]UP DB DB
Adv Adv ForgeA A A

Q       . Since 
,

Pr [ ] ( )
DB

Forge Adv
A

P t    
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(see [3]), this yields the statement of the theorem. 

4. Conclusion 

This work has revealed the security weaknesses in two key establishment protocols: Harn and 

Lin’s group key transfer protocol and Dutta and Barua’s group key agreement protocol. The 

Harn-Lin protocol cannot protect the long-term keys of users while the Dutta-Barua protocol 

is vulnerable to an unknown key share attack. We have also suggested how the weaknesses can 

be eliminated. One implication of our result is that the claimed proof of security for the 

Dutta-Barua protocol is not rigorous enough to capture unknown key share attacks. The 

problem we found with Dutta and Barua’s proof is that it fails to consider concurrent 

executions of the protocol. We have addressed this problem by extending Dutta and Barua’s 

proof to the concurrent case. 
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