
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 2, Feb 2012 751

Copyright ⓒ 2012 KSII

This work was supported by Priority Research Centers Program through the National Research Foundation of

Korea(NRF) funded by the Ministry of Education, Science and Technology(2011-0018397).

DOI: 10.3837/tiis.2012.02.018

Security Weaknesses in Harn-Lin and
Dutta-Barua Protocols for Group Key

Establishment

Junghyun Nam
1
, Moonseong Kim

2
, Juryon Paik

3
 and Dongho Won

3

1 Department of Computer Engineering, Konkuk University, Korea

[e-mail: jhnam@kku.ac.kr]
 2Information and Communications Examination Bureau, Korean Intellectual Property Office, Korea

[e-mail: moonseong@kipo.go.kr]
3 Department of Computer Engineering, Sungkyunkwan University, Korea

[e-mail: wise96@ece.skku.ac.kr, dhwon@security.re.kr]

*Corresponding author: Dongho Won

Received August 14, 2011; revised October 7, 2011; revised November 18, 2011; revised January 11, 2012;

accepted January 19, 2012; published February 28, 2012

Abstract

Key establishment protocols are fundamental for establishing secure communication channels

over public insecure networks. Security must be given the topmost priority in the design of a

key establishment protocol. In this work, we provide a security analysis on two recent key

establishment protocols: Harn and Lin’s group key transfer protocol and Dutta and Barua’s

group key agreement protocol. Our analysis shows that both the Harn-Lin protocol and the

Dutta-Barua protocol have a flaw in their design and can be easily attacked. The attack we

mount on the Harn-Lin protocol is a replay attack whereby a malicious user can obtain the

long-term secrets of any other users. The Dutta-Barua protocol is vulnerable to an unknown

key-share attack. For each of the two protocols, we present how to eliminate their security

vulnerabilities. We also improve Dutta and Barua’s proof of security to make it valid against

unknown key share attacks.

Keywords: Security, group key establishment, attack, secret sharing

752 Nam et al.: Security Weaknesses in Harn-Lin and Dutta-Barua Protocols for Group Key Establishment

1. Introduction

Key establishment protocols allow two or more communicating parties to establish their

common secret key called a session key. Establishment of session keys is one of the

fundamental cryptographic operations and provides a typical way of building secure

communication channels over insecure public networks. Traditionally, protocols which can be

run by an arbitrary number of parties are called group (or conference) key establishment

protocols [1][2][3][4][5], in contrast to protocols which can be run only by two or three parties.

In the group setting, a session key is also called a group key. Key establishment protocols are

often classified into two types: key agreement protocols and key transfer protocols. Key

agreement protocols require each participant to contribute their parts to the final form of the

session key, whereas key transfer protocols allow one trusted entity to generate the session key

and then transfer it to all participants.

The first priority in designing a key establishment protocol is placed on ensuring the

security of the protocol. Even if it is computationally infeasible to break the cryptographic

algorithms used, the whole system becomes vulnerable to all manner of attacks if the keys are

not securely established. But the experience shows that the design of secure key establishment

protocols is notoriously difficult. Over the last decades, a number of protocols have been

found to be insecure years after they were published [6][7][8][9][10]. Thus, key establishment

protocols must be subjected to a thorough scrutiny before they can be deployed into a public

network which might be controlled by an adversary.

The fundamental security attribute that a key establishment protocol is expected to achieve

is implicit key authentication. Informally, this attribute means that no one other than the

intended parties can compute the session key. A key establishment protocol achieving implicit

key authentication is said to be authenticated, and is a primitive of crucial importance in much

of modern cryptography and network security. Authenticated key establishment inevitably

requires some secret information to be established between the communicating parties before

the protocol is ever executed. The pre-established secrets are commonly known as long-term

keys. Implicit key authentication can be achieved only when the secrecy of every long-term

key is guaranteed. As soon as the long-term key of a party is disclosed, all the protocol

sessions that the party participates become completely insecure. It is thus crucial that

long-term keys must not be revealed under any circumstances.

Resistance to unknown key-share (UKS) attacks is among many desirable security attributes

that key establishment protocols should achieve. An adversary AU is said to succeed in an

UKS attack if the attack results in two parties iU and jU such that: (1) iU and jU have

computed the same session key; (2) iU is unaware of the “key share” with jU and falsely

believes its key is shared with AU ; and (3) jU correctly believes its key is shared with iU . As

implied by this definition, the adversary AU need not obtain any session key to benefit from

an UKS attack. The adversary AU may be able to take advantage of iU ’s false belief in

various ways if subsequent messages are encrypted or authenticated with the established key

[11]. UKS attacks were first discussed by Diffie et al. [12] and have been found against many

key establishment protocols [7][8][13][14][11][15].

In this work, we are concerned with the security of two recent key establishment protocols,

namely the group key transfer protocol due to Harn and Lin [16] and the group key agreement

protocol due to Dutta and Barua [17]. The Harn-Lin protocol employs Shamir’s secret sharing

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 2, Feb 2012 753

[18] and assumes a trusted key generation center (KGC) who provides key distribution service

to its registered users. During registration, KGC issues each user a long-term key which should

be kept privately by the user. One of the security claims made for this protocol is that the

long-term key of each user cannot be learned by other users. But, it turns out that this claim is

not true. The truth is that the Harn-Lin protocol is vulnerable to a replay attack whereby a

malicious user, who is registered with KGC, can readily obtain the long-term key of any other

registered user. We reveal this security vulnerability of the Harn-Lin protocol and then suggest

a countermeasure against the replay attack. The attack we mount on the Dutta-Barua protocol

is an UKS attack. The Dutta-Barua protocol is based on the well-known protocol of Burmester

and Desmedt [1] and requires 2 communication rounds to establish a session key among a

group of users. This protocol carries a claimed proof of its security in an adversarial model

which captures UKS attacks. But, the proof simply assumes non-concurrent executions of the

protocol and so does not capture our UKS attack. Hence, we not only fix the protocol but also

extend its proof to the concurrent case. The replay attack on the Harn-Lin protocol is given in

Section 2 while the UKS attack on the Dutta-Barua protocol is given in Section 3.

2. Harn and Lin’s Group Key Transfer Protocol

This section investigates the security of Harn and Lin’s group key transfer protocol HL [16].

We first review the HL protocol and cryptanalyze it by mounting a replay attack. We then

show how to fix the protocol by presenting a simple countermeasure against the attack.

2.1 Protocol Description

The protocol HL consists of three phases: system initialization, user registration, and key

distribution.

System initialization. KGC randomly chooses two safe primes p and q (i.e., p and q are

primes such that (1) / 2p p and (1) / 2q q are also primes) and computes n pq . n is

made publicly known.

User registration. Each user is required to register at KGC to subscribe the key distribution

service. During registration, KGC shares a secret (ix , iy) with each user iU where ix , iy
*
nZ .

Key distribution. This phase constitutes the core of the protocol and is performed whenever a

group of users 1,..., tU U decide to establish a common session key.

Step 1. A designated user of the group, called the initiator, sends a key-distribution request to

KGC. The request carries the list of participating users 1,..., tU U .

Step 2. KGC broadcasts the participant list 1,..., tU U in response to the request.

Step 3. Each user iU , for 1,...,i t , sends a random challenge *
i nr Z to KGC.

Step 4. KGC randomly selects a session key k and constructs by interpolation a t-th degree

polynomial ()f x passing through the (1t) points: (1x , 1 1y r), ... , (tx , t ty r) and (0 , k).

Next, KGC selects t additional points 1P , ... , tP that lie on the polynomial ()f x . KGC then

computes 1 1 1(, ,..., , ,..., , ,...,)t t th k U U r r P P , where h is a one-way hash function, and

broadcasts 1 1, ,..., , ,...,t tr r P P to the users. All computations with respect to ()f x are

performed modulo n .

754 Nam et al.: Security Weaknesses in Harn-Lin and Dutta-Barua Protocols for Group Key Establishment

KGC

1Protocol participants: KGC, ,..., tU U

iU

*
i nr Z

(, ,)i i i ih x y r

,i ir

(,)i ix y
1 1(,),..., (,)t tx y x y

Select asession keyk

Construct a polynomial ()from:f x

1 1 1(0,),(,),..., (,)t t tk x y r x y r

1Verify ,..., t

1 1 1Compute (, ,..., , ,..., , ,...,)t t th k U U r r P P

1Select points: ,..., tt P P
1 1, ,..., , ,...,t tr r P P

Construct ()from:f x

1(,), ,...,i i i tx y r P P

Recover (0)k f

Verify

Compute (, ,)i i ih x y k
i

1Verify ,..., t

1Compute (, , , ,...,)i i i th x y k U U

i
Verify i

Fig. 1. The protocol HL
+

(described from Step 3)

Step 5. Each iU constructs the polynomial ()f x from the (1t) points: 1P ,…, tP and

(ix , i iy r). Then iU recovers the session key (0)k f and checks the correctness of in

the straightforward way. iU aborts if the check fails.

Since the above protocol HL focuses on protecting the keying material broadcasted from

KGC to users, Harn and Lin also present (in Remark 2 of [16]) how HL can be extended to

provide user authentication and key confirmation. Let HL+
 be the extended version of HL. HL+

is constructed from HL by revising Steps 3 and 4 to achieve user authentication and by adding

Steps 6 and 7 to achieve key confirmation.

Step 3 (of HL+
). Each user iU , for 1,...,i t , selects a random challenge *

i nr Z , computes

(, ,)i i i ih x y r , and sends ,i ir to KGC.

Step 4 (of HL+
). KGC checks the correctness of each i in the straightforward way. KGC

aborts if any of the checks fails. Otherwise, KGC continues with Step 4 of HL.

Step 6. Each iU sends (, ,)i i ih x y k to KGC.

Step 7. After receiving all i ’s, KGC sends 1(, , , ,...,)i i i th x y k U U to iU for 1,...,i t .

All other parts (including the phases of system initialization and user registration) remain

unchanged between HL and HL+
. A high level description of HL+

 is given in Fig. 1.

2.2 Replay Attack

The fundamental security goal of a key establishment protocol is to ensure that no one other

than the intended users can compute the session key. In the cases of HL and HL+
, this goal can

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 2, Feb 2012 755

be achieved only when the secrecy of every (ix , iy) is guaranteed. As soon as (ix , iy) is

disclosed, all the protocol sessions that iU participates become completely insecure. Thus, it

is important that ix ’s and iy ’s must not be revealed under any circumstances.

Harn and Lin claim that their protocols prevent the secret (ix , iy) of each iU from being

disclosed to other users, either insiders or outsiders (Theorem 3 of [16]). However, we found

that this claim is wrong. Suppose that a malicious registered user jU has a goal of finding out

iU ’s secret (ix , iy). Then jU can achieve its goal by mounting the following attack against

the protocol HL+
.

Step 0. As a preliminary step, the adversary jU eavesdrops on a protocol session, where iU

participates, and stores the message ,i ir sent by iU in Step 3 of the session.

jU then initiates two (either concurrent or sequential) sessions S and S of the protocol

alleging that the participants of both sessions are iU and jU . Once KGC responds with the

participant list ,i jU U in Step 2 of each session, jU performs Step 3 of the sessions while

playing dual roles of jU itself and the victim iU .

Step 3 of S . jU sends the eavesdropped message ,i ir to KGC as if the message is from

iU . But, jU behaves honestly in sending its own message; jU selects a random *
j nr Z ,

computes (, ,)j j j jh x y r , and sends ,j jr to KGC.

Step 3 of S . jU replays the messages ,i ir and ,j jr . That is, jU sends ,i ir as iU ’s

message and sends ,j jr as its own message.

KGC cannot detect any discrepancy since i and j are both valid. Note that KGC does not

check for message replays. Hence, KGC will distribute the keying materials for the sessions.

Let 2
2 1()f x a x a x k and 2

2 1()f x a x a x k be the polynomials constructed by KGC

respectively in sessions S and S . As soon as receiving the keying materials, jU derives

these polynomials as specified in Step 5 of the protocol. Now let

2
2 2 1 1

() () ()

() () .

g x f x f x

a a x a a x k k

Then, () 0ig x and () 0jg x since () ()i i i if x f x y r and () ()j j j jf x f x y r . This

implies that ix and jx are the two roots of the quadratic equation 2
2 2 1 1() ()a a x a a x

0k k . It follows that

2
2 2 1 1 2 2() () ()()().i ja a x a a x k k a a x x x x

Since 2 2() i jk k a a x x , we get

1 1
2 2() ().i jx x a a k k (1)

Here, the computations are done modulo n . Once ix is obtained as in Eq. (1), iy can be easily

756 Nam et al.: Security Weaknesses in Harn-Lin and Dutta-Barua Protocols for Group Key Establishment

computed from ()i i if x y r . The value of iy is different depending on whether i iy r n

or i iy r n .

() if

(()) otherwise.

i i i i
i

i i

f x r y r n
y

f x n r

i can serve as a verifier for checking which of the two cases is true. Using (ix , iy) obtained

as above, jU is able to complete the protocol without the attack being noticed.

The above attack assumes, for ease of exposition, that KGC allows for the key

establishment between two parties. But, this assumption is not necessary. If two-party key

establishments are not allowed, jU can collude with another malicious user kU to mount a

slight variant of the attack. Assume two sessions of the protocol, in both of which the

participants are iU , jU and kU . If jU and kU collude together and run the two sessions as in

the attack above, they can construct a cubic polynomial 3 2
3 3 2 2() () ()g x a a x a a x

1 1()a a x k k such that () () () 0i j kg x g x g x . Then, with jx and kx in hand, the

adversaries can compute ix as

1 1 1
3 3(1) () ()i j kx x x a a k k

and thereby can determine iy as above.

So far, we have seen the vulnerability of the protocol HL+
. As can be expected, the basic

protocol HL also suffers from the same vulnerability. The attack against HL is essentially

similar to the above attack, and its description is omitted due to the similarity.

Disclosure of a long-term key can easily lead to a devastating result. Suppose, for example,

that the malicious user jU gets unregistered with KGC after obtaining the long-term secret

(ix , iy) of iU . Then jU , without reregistering, can completely compromise all the sessions

that iU will participate in the future.

2.3 Countermeasure

The security failure of HL+
 (and HL) is attributed to one obvious flaw in the protocol design:

the messages sent by users in Step 3 can be replayed in different protocol sessions. This flaw

allows our adversary jU to send the same random challenges twice and thereby to construct a

quadratic polynomial ()g x such that () () 0i jg x g x . Fortunately, message replays can be

effectively prevented if Steps 2 and 3 of the protocols are revised as follows:

Step 2 (revision). KGC selects a random *
0 nr Z and broadcasts it along with the participant

list 1,..., tU U .

Step 3 (revision). Each user iU , for 1,...,i t , selects a random *
i nr Z , computes (,i ih x

0 1, , , ,...,)i i ty r r U U , and sends ,i ir to KGC.

The other steps of the protocols remain unchanged except that in Step 4 of HL, KGC has to

check the correctness of i , for 1,...,i t , before starting to construct the polynomial ()f x . As

a result of our modification, the protocols HL and HL+
 become identical except that HL+

requires two additional steps (Steps 6 and 7) for key confirmation. With the modification

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 2, Feb 2012 757

applied, the message ,i ir eavesdropped in a protocol session can no longer be replayed in

any other sessions. Hence, our attack is not valid against the improved protocols.

3. Dutta and Barua’s Group Key Agreement Protocol

As previously mentioned, Dutta and Barua’s group key agreement protocol DB [17] is

vulnerable to an unknown key-share attack. We here reveal this security problem with the

protocol DB and show how to address it. We also interpret our attack in the context of the

formal proof model to invalidate the claimed proof of security for DB.

3.1 Protocol Description

Let U be a set of all users who can participate in the protocol DB. Any subset of U may

decide at any point to establish a session key. Thus, a user may have several instances involved

in distinct, possibly concurrent, protocol sessions. The protocol DB requires each user iU to

maintain a counter ic whose value indicates the number of instances created by iU . The

counters of users are used in defining session identifiers, as specified in the protocol

description below. The network where the users interact is assumed to be fully controlled by

an active adversary who may read, intercept and fabricate any messages at will. The protocol

is authenticated using signatures. Let = (KGen , Sign , Vrfy) be a signature scheme which is

existentially unforgeable under an adaptive chosen message attack. Here, KGen is the key

generation algorithm, Sign is the signature generation algorithm, and Vrfy is the signature

verification algorithm. Before the protocol is ever executed, the following initialization should

be performed to generate system parameters and long-term keys.

 The users in U choose a cyclic multiplicative group of prime order q and fix an arbitrary

generator g of the cyclic group.

 Each user iU U generates its long-term verification/signing keys (iVK , iSK) by running

KGen .

 Each iU U sets its counter ic to 0. (ic is incremented whenever a new instance of iU is

created.)

If there are n participants 1,..., nU U , DB proceeds as follows. (Throughout the protocol

description, all indices are to be taken in a cycle, i.e., 1 1nU U , etc.)

Round 1: Each iU chooses a random *
i qx Z , computes ix

iy g and Sign (|1| |
ii SK i iU y

)ic , and sends Exp |1| | |i i i i iU y c to 1iU and 1iU . Here, the symbol | denotes the string

concatenation operation.

Round 2: Upon receiving 1Expi and 1Expi , iU checks that
1 1 1 1 1Vrfy (|1| | ,)

iPK i i i iU y c

1 and
1 1 1 1 1Vrfy (|1| | ,) 1

iPK i i i iU y c
 . iU aborts if either of two verifications fails.

Otherwise, iU computes 1
ixL

i iK y , 1
ixR

i iK y , /R L
i i iY K K , and Sign (| 2 | |)

ii SK i i iU Y c .

Then iU broadcasts Div | 2 | | |i i i i iU Y c .

Key computation: Each iU checks that Vrfy (| 2 | | ,) 1
jPK j j j jU Y c for all {1,..., }\{ }j n i .

iU aborts if any of the verifications fails. Otherwise, iU computes

758 Nam et al.: Security Weaknesses in Harn-Lin and Dutta-Barua Protocols for Group Key Establishment

1 1

2 2 1

 ,

 ,

R R
i i i

R R
i i i

K Y K

K Y K

 1 1 2 .R R
i n i n i nK Y K

iU checks that 1
R
i nK is equal to L

iK . If not, iU aborts. Otherwise, iU computes the

session key sk as

1 2 2 3 1

1 2

n

R R R
n

x x x x x x

sk K K K

g

and defines the session identifier iSID as 1 1(,),..., (,)i n nSID U c U c .

Fig. 2 shows an execution of the protocol DB when there are 4 participants 1 2 3, ,U U U and 4U .

1 *
1 1,

x
R qy g x Z 8

1 2 3 4Protocol participants: , , ,U U U U

1U1U 2U2U 4U4U

2 *
2 2,

x
R qy g x Z 3 *

3 3,
x

R qy g x Z 4 *
4 4,

x
R qy g x Z

3U3U

11 1 1 1Sign (|1| |)SK U y c
22 2 2 2Sign (|1| |)SK U y c

33 3 3 3Sign (|1| |)SK U y c
44 4 4 4Sign (|1| |)SK U y c

4U 2U

1 1 1 1|1| | |U y c

1U 3U

2 2 2 2|1| | |U y c

2U 4U

3 3 3 3|1| | |U y c

3U 1U

4 4 4 4|1| | |U y c

4 2Verify and

4 1
1

x xLK g

1 2
1

x xRK g

1 2 4 1
1 /

x x x x
Y g g

11 1 1 1Sign (| 2 | |)SK U Y c

1 1 1 1

Broadcast

| 2 | | |U Y c

1 3Verify and

1 2
2

x xLK g

2 3
2

x xRK g

2 3 1 2
2 /

x x x x
Y g g

22 2 2 2Sign (| 2 | |)SK U Y c

2 2 2 2

Broadcast

| 2 | | |U Y c

2 4Verify and

2 3
3

x xLK g

3 4
3

x xRK g

3 4 2 3
3 /

x x x x
Y g g

33 3 3 3Sign (| 2 | |)SK U Y c

3 3 3 3

Broadcast

| 2 | | |U Y c

3 1Verify and

3 4
4

x xLK g

4 1
4

x xRK g

3 44 1
4 /

x xx x
Y g g

44 4 4 4Sign (| 2 | |)SK U Y c

4 4 4 4

Broadcast

| 2 | | |U Y c

2 3 4Verify , ,

2 3 4Compute , ,R R RK K K

4 1Check if R LK K

3 4 1Verify , ,

3 4 1Compute , ,R R RK K K

1 2Check if R LK K

4 1 2Verify , ,

4 1 2Compute , ,R R RK K K

2 3Check if R LK K

1 2 3Verify , ,

1 2 3Compute , ,R R RK K K

3 4Check if R LK K

1 2 2 3 3 4 4 1
1 2 3 4Session key

x x x x x x x xR R R Rsk K K K K g

Fig. 2. An execution of the protocol DB

3.2 Unknown Key-Share Attack

We here mount an UKS attack against the protocol DB described above. Consider a protocol

session S to be run by the users of group 1 2 3{ , , }G U U U Now suppose that 1U and 2U

accept the invitation by the malicious adversary AU to participate in a new concurrent session

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 2, Feb 2012 759

S , thus forming the group 1 2{ , , }AG U U U . Let S
iU and S

iU
 denote iU ’s instances

participating respectively in S and S . Then the goal of the adversary AU is to trick 1
SU
 and

2
SU
 into establishing a session key with 3U . The attack works as follows:

1. As session S starts, 1
SU , 2

SU and 3U will send their first messages 1 1 1 1 1Exp |1| | |U y c ,

2 2 2 2 2Exp |1| | |U y c and 3 3 3 3 3Exp |1| | |U y c , respectively. The adversary AU

intercepts 3Exp while blocking 1Exp and 2Exp from reaching 3U . In other words, 1
SU

and 2
SU never receive 3Exp and 3U receives neither 1Exp nor 2Exp .

2. As a participant of session S , the adversary AU sends the message 3Exp |1| |A AU y

|A Ac to 1
SU
 and 2

SU
 and receives the messages 1 1 1 1 1Exp |1| | |U y c and 2 2Exp |U

2 2 21| | |y c respectively from 1
SU
 and 2

SU
 . Notice that ExpA contains 3y (which is

generated by 3U and is obtainable from 3Exp). We mean by this that AU has computed its

signature A as 3Sign (|1| |)
AA SK A AU y c .

3. AU forwards the received messages 1Exp and 2Exp to 3U as if they are sent by 1
SU and

2
SU , respectively. These messages will pass 3U ’ s verification since 1 (resp. 2) is a

valid signature on 1 1 1|1| |U y c (resp. 2 2 2|1| |U y c) under the verification key 1VK (resp.

2VK). Hence, 3U will send out its second message 3 3 3 3 3Div | 2 | | |U Y c . If we let

1

1y =g
x and 2

2y =g
x , then clearly

3 1 2 3

3 .
x x x x

Y g

4. AU intercepts 3Div , computes 3Sign (| 2 | |)
AA SK A AU Y c (using 3Y from 3U), and sends

3Div | 2 | | |A A A AU Y c to 1
SU
 and 2

SU
 . Meanwhile, 1

SU
 and 2

SU
 will send AU their

second messages 1 1 1 1 1Div | 2 | | |U Y c and 2 2 2 2 2Div | 2 | | |U Y c where

1 2 3 1 2 3 1 2

1 2and .
x x x x x x x x

Y g Y g

5. AU forwards 11Div and 2Div to 3U as if they are from 1
SU and 2

SU , respectively. These

messages will pass 3U ’s verifications since the signatures 1 and 2 are both valid and

3
LK is equal to 2 1 3

RY Y K , where 2 3

3
x xLK g

 and 3 1

3
x xRK g

 .

6. Consequently, 1
SU
 , 2

SU
 and 3U will compute the same session key

1 2 2 3 3 1 .
x x x x x x

sk g

At the end of the attack: (1) 1U , 2U and 3U have computed the same session key sk ; (2)

1U and 2U believe that sk is shared with AU , while in fact it is shared with 3U ; (3) 3U

believes that sk is shared with 1U and 2U . This shows that the protocol DB is vulnerable to

an UKS attack when two protocol sessions are running concurrently with some joint

participants.

3.3 Attacking in the Model

The protocol DB carries a claimed proof of security in a formal model of communication and

adversarial capabilities. The proof model used for DB is a typical one [3] and allows the

760 Nam et al.: Security Weaknesses in Harn-Lin and Dutta-Barua Protocols for Group Key Establishment

adversary A to access all the standard oracles: Send, Execute, Reveal, Corrupt and Test.
Any key establishment protocol proven secure in such a model should be resistant to UKS

attacks [8]. But as we have shown, the DB protocol is vulnerable to an UKS attack. The

existence of our attack means, in the context of the proof model, that there exists an adversary

A whose advantage in attacking protocol DB is 1 , or in other words, there exists an adversary

A who can distinguish, with probability 1 , random keys from real session keys. The

construction of such an A is rather straightforward from the attack above, and its brief

description follows:

Signing-key disclosure: First, A obtains AU ’s long-term signing key ASK by querying

Corrupt(AU).

Initiation: Next, A asks Send queries required to initiate two protocol sessions S :

1 2 3{ , , }G U U U and S : 1 2{ , , }AG U U U . For example, a query of the form Send(1U , *,

2 , AU U) prompts an unused instance * of 1U to initiate the protocol with 2U and AU . But,

no instance of AU needs to be asked this form of Send query because A will simulate by

itself the actions of AU .

Run: Now, A runs the two sessions in the exact same way as AU did in the above-described

attack. Note that A can perfectly simulate AU ’s attack by asking Send queries and by

using the disclosed long-term signing key ASK . Let S
iU and S

iU be iU ’s instances

participating respectively in S and S . Then, as in the attack above, the instances 1
SU
 , 2

SU

and 3
SU will eventually accept the same session key sk .

Session-key disclosure: A obtains the session key sk by querying either Reveal(1
SU
) or

Reveal(2
SU
).

Test: The instance 3
SU is fresh because (1) no Corrupt query has been asked for any of the

users 1U , 2U and 3U and (2) no Reveal query has been made for any of the instances 1
SU ,

2
SU and 3

SU . Thus, A may test (i.e., ask a Test query against) the instance 3
SU . Since A

knows the value of sk , the probability that A guesses correctly the bit b used by the Test

oracle is 1 and so is the advantage of A in attacking DB.

3.4 Countermeasure

The vulnerability of DB to the UKS attack is attributed to the fact that 3U cannot distinguish

between the signatures generated by 1
SU (resp. 2

SU) and those generated by 1
SU
 (resp. 2

SU
).

Given this observation, it is not hard to figure out how to fix the protocol. As a simple

countermeasure against the attack, we recommend to change the computations of the

signatures i and i to

1

1

Sign (|1| | | | |),

Sign (| 2 | | | | |).

i

i

i SK i i i n

i SK i i i n

U y c U U

U Y c U U

The identities of all protocol participants are now included as part of the messages to be signed.

With this modification applied, the signatures from 1
SU
 and 2

SU
 can no longer pass 3U ’s

verification since the participants are different between the two sessions S and S . Hence, the

UKS attack is not valid against the improved protocol.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 2, Feb 2012 761

3.5 Security Proof

Since our UKS attack can be simulated in the proof model used for DB, there must be some

problems with the security proof given by Dutta and Barua [17]. The problem with Dutta and

Barua’s proof is that it simply assumes non-concurrent executions of the protocol. We here

prove the security of our improved protocol DB +
 by extending Dutta and Barua’s proof to the

concurrent case. As in [17], we use UP to denote the unauthenticated version of the protocol

DB (or DB +
). The following theorem presents our result on the security of DB +

. It claims that

DB +
 is secure against active adversaries under the security of UP against passive adversaries.

(All the notations that are not defined here are taken over from [17].)

Theorem 1. For any adversary who asks Eq Execute queries and Sq Send queries with

time complexity t , its advantage in breaking the security of the protocol DB +
 is upper

bounded by

DB
Adv

(, ,)E St q q Q
UPAdv (,1)t P Adv

()t

where E SQ q q and P is a polynomial-sized set of potential participants.

Proof. We prove the theorem by finding a reduction from the security of protocol DB +
 to

the security of protocol UP. As shown in [17], the unauthenticated protocol UP is provably

secure against a passive adversary. Assuming an active adversary A who attacks protocol

DB +
, we construct a passive adversary A that uses A in its attack on UP. As in a typical

reductionist approach, the adversary A simply runs A as a subroutine and answers the

oracle queries of A on its own. The idea in constructing A is to use the fact that in attacking

DB +
, the adversary A is able to relay messages only between user instances with the same

set of participants and counters. Based on this idea, the adversary A obtains a transcript T of

UP for each unique combination of participants and nonces by calling its own Execute oracle,

and generates a transcript T of DB +
 by patching T with appropriate signatures. A then uses

the messages of T in answering A ’s Send queries directed to user instances which have

the same participants and nonces as used in generating T . In this way, A is limited to

sending messages already contained in T , unless signature forgery occurs. In essence, A is

ensuring that A ’s capability of attacking protocol DB +
 is demonstrated only on the session

key associated with the patched transcript T and thus is translated directly into the capability

of attacking protocol UP.

However, there exists a difficulty in constructing the passive adversary A from the active

adversary A . Since A can obtain a private signing key at any time by calling the Corrupt
oracle, it may send arbitrary - but still valid - messages of its choice (i.e., messages that are not

contained in the patched transcript T) to an instance. The problem in this case is that A

cannot simulate the actions of the instance because it does not have appropriate internal data

used by the instance at earlier stage. The exact same problem arises in proving security for the

compiler of Katz and Yung [3]. The proof for the Katz-Yung compiler circumvents this

simulation problem by letting A guess the session in which A will take advantage of its only

chance to access the Test oracle. For the guessed session, A handles the queries of the active

adversary by calling its own Execute oracle as described above, and for all other sessions, A

honestly responds by directly executing protocol DB +
 (i.e., without accessing the Execute

oracle). Our proof follows this approach in extending Dutta and Barua’s proof to the

concurrent case.

762 Nam et al.: Security Weaknesses in Harn-Lin and Dutta-Barua Protocols for Group Key Establishment

The passive adversary A begins by choosing a random {1,..., }Q which represents a

guess of the session for which A will ask its Test query. A simulates the queries of the

active dversary A as follows:

Corrupt Queries. These queries are answered in the obvious way. Namely, A returns the

long-term signing key iSK in response to the query Corrupt(iU).

Execute Queries. If an Execute query is not the -th Send/Execute query of A , then A

simply generates by itself a transcript of an execution of DB +
 and returns this to A . A can do

this because it knows all the signing keys of users. If an Execute query is the -th

Send/Execute query of A , A proceeds exactly as in Dutta and Barua’s simulation of

Execute queries.

Send Queries. If a Send query is not the -th Send/Execute query of A , then A

simulates on its own the actions of the instance and returns a response as needed. A can do this

because it knows all the signing keys of users. If a Send query is the -th Send/Execute

query of A , A proceeds exactly as in Dutta and Barua’s simulation of Send queries.

Reveal Queries. If a Reveal query is asked to an instance simulated by A itself, then the

appropriate session key can be computed/returned. Otherwise, A aborts and outputs a random

bit since its guess was incorrect.

Test Queries. If the Test query is asked to an instance for which A has asked its single

Execute query, then A asks its own Test query and returns the result to A . Otherwise, A

aborts and outputs a random bit since its guess was incorrect.

As long as Forge does not occur and A correctly guesses , the above simulation for A is

perfect. Let Guess denote the event that A correctly guesses . If Forge occurs, A aborts

and outputs a random bit. Let Win Guess Forge . Then, clearly, Pr[|] 1 2Succ Win .

Now, to derive the statement of Theorem 1, we apply a series of simple modifications to the

definitional equation
, ,2Pr [] 1UP UPAdv SuccA A as follows:

, ,

, ,

, , ,

, ,

, ,

2Pr [] 1

2Pr [] 2Pr [] 1

2Pr [] 2Pr [|]Pr [] 1

2Pr [] Pr [] 1

2 Pr [] Pr [

UP UP

DB DB

DB DB DB

DB DB

DB DB

Adv Succ

Succ Win Succ Win

Succ Win Succ Win Win

Succ Win Win

Succ Forge Guess Forg

A A

A A

A A A

A A

A A
Q

, , ,

, ,

, ,

, ,

] 1

2 Pr [2 Pr [] Pr [] 1

2 Pr [1 Pr [] 1

1 | 2Pr [1 | 1 Pr []

1 1 Pr []

DB DB DB

DB DB

DB DB

DB DB

e

Succ] Succ Forge Guess Forge

Succ] Forge

Succ] Forge

Adv Forge

A A A

A A

A A

A A

Q Q

Q Q

Q Q

Q Q

It follows that
, , ,

Pr []UP DB DB
Adv Adv ForgeA A A

Q . Since
,

Pr [] ()
DB

Forge Adv
A

P t

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 2, Feb 2012 763

(see [3]), this yields the statement of the theorem.

4. Conclusion

This work has revealed the security weaknesses in two key establishment protocols: Harn and

Lin’s group key transfer protocol and Dutta and Barua’s group key agreement protocol. The

Harn-Lin protocol cannot protect the long-term keys of users while the Dutta-Barua protocol

is vulnerable to an unknown key share attack. We have also suggested how the weaknesses can

be eliminated. One implication of our result is that the claimed proof of security for the

Dutta-Barua protocol is not rigorous enough to capture unknown key share attacks. The

problem we found with Dutta and Barua’s proof is that it fails to consider concurrent

executions of the protocol. We have addressed this problem by extending Dutta and Barua’s

proof to the concurrent case.

References

[1] M. Burmester and Y. Desmedt, “A secure and efficient conference key distribution system,”

Advances in Cryptology − EUROCRYPT 1994, vol.950, pp.275-286, 1995. Article (CrossRef

Link)

[2] E. Bresson, O. Chevassut, D. Pointcheval and J.-J. Quisquater, “Provably authenticated group

Diffie-Hellman key exchange,” in Proc. of 8th ACM Conference on Computer and

Communications Security, pp.255-264, 2001. Article (CrossRef Link)

[3] J. Katz and M. Yung, “Scalable protocols for authenticated group key exchange,” in Proc. of

Advances in Cryptology − CRYPTO 2003, vol.2729, pp.110-125, 2003. Article (CrossRef Link)

[4] J. Nam, S. Kim and D. Won, “Secure group communications over combined wired and wireless

networks,” in Proc. of 2nd International Conference on Trust, Privacy, and Security in Digital

Business, vol.3592, pp.90-99, 2005. Article (CrossRef Link)

[5] M. Abdalla, E. Bresson, O. Chevassut and D. Pointcheval, “Password-based group key exchange

in a constant number of rounds,” in Proc. of 9th International Workshop on Practice and Theory in

Public Key Cryptography, vol.3958, pp.427-442, 2006. Article (CrossRef Link)

[6] O. Pereira and J.-J. Quisquater, “A security analysis of the cliques protocols suites,” in Proc. of

14th IEEE Computer Security Foundations Workshop, pp.73-81, 2001. Article (CrossRef Link)

[7] H. Krawczyk, “HMQV: a High-Performance secure Diffie-Hellman protocol,” Advances in

Cryptology − CRYPTO 2005, vol.3621, pp.546-566, 2005. Article (CrossRef Link)

[8] K.-K. Choo, C. Boyd and Y. Hitchcock, “Errors in computational complexity proofs for

protocols,” Advances in Cryptology − ASIACRYPT 2005, vol.3788, pp.624-643, 2005. Article

(CrossRef Link)

[9] J. Nam, S. Kim and D. Won, “Attack on the Sun-Chen-Hwang’s three-party key agreement

protocols using passwords,” IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, vol.E89-A, no.1, pp.209-212, 2006.

[10] J. Nam, J. Paik, U. Kim and D. Won, “Security enhancement to a password-authenticated group

key exchange protocol for mobile ad-hoc networks,” IEEE Communications Letters, vol.12, no.2,

pp.127-129, 2008. Article (CrossRef Link)

[11] B. S. Kaliski, “An Unknown Key-Share attack on the MQV key agreement Protocol,” ACM

Transactions on Information and System Security, vol.4, no.3, pp.275-288, 2001. Article

(CrossRef Link)

[12] W. Diffie, P. Oorschot and M. Wiener, “Authentication and authenticated key exchanges,”

Designs, Codes, and Cryptography, vol.2, no.2, pp.107-125, 1992. Article (CrossRef Link)

http://dx.doi.org/doi:10.1007/BFb0053443
http://dx.doi.org/doi:10.1007/BFb0053443
http://dx.doi.org/doi:10.1145/501983.502018
http://dx.doi.org/doi:10.1007/978-3-540-45146-4_7
http://dx.doi.org/doi:10.1007/11537878_10
http://dx.doi.org/doi:10.1007/11745853_28
http://dx.doi.org/doi:10.1109/CSFW.2001.930137
http://dx.doi.org/doi:10.1007/11535218_33
http://dx.doi.org/doi:10.1007/11593447_34
http://dx.doi.org/doi:10.1007/11593447_34
http://dx.doi.org/doi:10.1109/LCOMM.2008.071384
http://dx.doi.org/doi:10.1145/501978.501981
http://dx.doi.org/doi:10.1145/501978.501981
http://dx.doi.org/doi:10.1007/BF00124891

764 Nam et al.: Security Weaknesses in Harn-Lin and Dutta-Barua Protocols for Group Key Establishment

[13] S. Blake-Wilson and A. Menezes, “Unknown Key-Share attacks on the Station-to-Station (STS)

protocol,” in Proc. of 2nd International Workshop on Practice and Theory in Public Key

Cryptography, vol.1560, pp.154-170, 1999. Article (CrossRef Link)

[14] J. Baek and K. Kim, “Remarks on the unknown Key-Share attacks,” IEICE Transactions on

Fundamentals of Electronics, Communications and Computer Sciences, vol.E83-A, no.12,

pp.2766-2769, 2000.

[15] K. Shim, “Cryptanalysis of mutual authentication and key exchange for low power wireless

communications,” IEEE Communications Letters, vol.7, no.5, pp.248-250, 2003. Article

(CrossRef Link)

[16] L. Harn and C. Lin, “Authenticated group key transfer protocol based on secret sharing,” IEEE

Transactions on Computers, vol.59, no.6, pp.842-846, 2010. Article (CrossRef Link)

[17] R. Dutta and R. Barua, “Provably secure constant round contributory group key agreement in

dynamic setting,” IEEE Transactions on Information Theory, vol.54, no.5, pp.2007-2025, 2008.

Article (CrossRef Link)

[18] A. Shamir, “How to share a secret,” Communications of the ACM, vol.22, no.11,pp. 612-613, 1979.

Article (CrossRef Link)

Junghyun Nam received the B.E. degree in Information Engineering from

Sungkyunkwan University, Korea, in 1997. He received his M.S. degree in Computer

Science from University of Louisiana, Lafayette, in 2002, and the Ph.D. degree in

Computer Engineering from Sungkyunkwan University, Korea, in 2006. He is now an

associate professor in Konkuk University, Korea. His research interests include

cryptography and computer security.

Moonseong Kim received the M.S. degree in Mathematics, August 2002 and the

Ph.D. degree in Electrical and Computer Engineering, February 2007 both from

Sungkyunkwan University, Korea. He was a research professor at Sungkyunkwan

University in 2007. From December 2007 to October 2009, he was a visiting scholar

in ECE and CSE, Michigan State University, USA. Since October 2009, he has been a

patent examiner in Information and Communication Examination Bureau, Korean

Intellectual Property Office (KIPO), Korea. His research interests include

wired/wireless networking, sensor networking, mobile computing, network security

protocols, and simulations/numerical analysis.

Juryon Paik received the B.E. degree in Information Engineering from

Sungkyunkwan University, Korea, in 1997. She received her M.E. and Ph.D. degrees

in Computer Engineering from Sungkyunkwan University in 2005 and 2008,

respectively. Currently, she is a research professor at the Department of Computer

Engineering, Sungkyunkwan University. Her research interests include XML mining,

semantic mining, and web search engines.

http://dx.doi.org/doi:10.1007/3-540-49162-7_12
http://dx.doi.org/doi:10.1109/LCOMM.2003.812175
http://dx.doi.org/doi:10.1109/LCOMM.2003.812175
http://dx.doi.org/doi:10.1109/TC.2010.40
http://dx.doi.org/doi:10.1109/TIT.2008.920224
http://dx.doi.org/doi:10.1145/359168.359176

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 2, Feb 2012 765

Dongho Won received his B.E., M.E., and Ph.D. degrees from Sungkyunkwan

University in 1976, 1978, and 1988, respectively. After working at ETRI (Electronics

& Telecommunications Research Institute) from 1978 to 1980, he joined

Sungkyunkwan University in 1982, where he is currently Professor of School of

Information and Communication Engineering. In the year 2002, he served as the

President of KIISC (Korea Institute of Information Security & Cryptology). He was

the Program Committee Chairman of the 8th International Conference on Information

Security and Cryptology (ICISC 2005). His research interests are on cryptology and

information security.

