• Title/Summary/Keyword: Proteome analysis

Search Result 320, Processing Time 0.035 seconds

Comparative Proteome Analysis of Zerumbone-treated Helicobacter pylori (Zerumbone 처리에 따른 Helicobacter pylori의 단백질 비교분석)

  • Kim, Sa-Hyun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.3
    • /
    • pp.275-283
    • /
    • 2018
  • Helicobacter pylori is a causative organism of various gastrointestinal diseases, including chronic gastritis, gastric ulcer, or gastric adenocarcinoma. Pathogenic factors, such as cytotoxin-associated protein A (CagA) and vacuolating cytotoxic protein A (VacA), play a role. This study analyzed qualitatively and quantitatively the effects of zerumbone on the changes in the protein expression levels of various H. pylori proteins, including CagA and VacA. Approximately 200 significant proteins were screened for the H. pylori 60190 (VacA positive / CagA positive; Eastern type) strain, and proteomic analysis was performed on 13 protein molecules that were clinically significant. After two-dimensional electrophoresis (2-DE), $ImageMaster^{TM}$ 2-DE Platinum software was used for quantitative measurements of protein spots. Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-TOF-MS) and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) were used for protein identification. After intensive analysis of the proteins that showed significant changes, a reverse transcription-polymerase chain reaction was performed as required to verify the results. In this study, the significance of zerumbone as a therapeutic agent for H. pylori infection was examined by screening a new pharmacological activity mechanism of zerumbone.

Skin Anti-aging and Anti-wrinkle Effects of Pinus koreaiensis Seed Oil (해송자 오일의 피부 항노화 및 주름 개선 효과)

  • Kim, Hyung-Mook;Kim, Tae-Jun;Im, Dong-bin;Ha, Sun-Bong;Kim, Ee-Hwa;Cha, Byung-Sun;Heo, Hyo-Jin;Brito, Sofia;Lee, Yong-Moon;Bin, Bum-Ho;Kwak, Byeong-Mun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.34 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • Objectives : The aim of this study was to investigated the anti-aging and anti-wrinkles effects of the pinus koreaiensis seed(PKS) oil. Methods : The anti-oxidant effect was performed by beta-carotene bleaching assay and the intracellular proteome was analyzed expression of each 15 proteins by 2-D electrophoresis. And fatty acid was analysed by gas chromatography. Anti-wrinkle effect was analyzing human skin by the PRIMOS system. Results : Fatty acid analysis of PKS oil has shown oleic acid was 49.7% and linoleic acid was 34.1%. And the antioxidant effect was about 125% compared with alpha-tocoperol(0.1%) by beta carotene bleaching assay. In 2D PAGE analysis, fifteen protein changes in five mechanisms which was collagen synthesis pathway, MMPs, ECM-cell interaction, cytokine, antioxidant enzymes were analyzed. In case of anti-wrinkle effect was proved in vivo by analyzing human skin by the PRIMOS system. The analysis results of eye wrinkles for 4 weeks showed an improvement effect of over 6%. Conclusions : In this study, the amount of protein change in the five mechanism through the cell experiment and the skin anti wrinkle efficacy by the human in vivo test were investigated. As a result pinus koreaiensis seed oil by supercritical extraction could be used as a anti-aging and anti-wrinkle substance for the skin.

Acoustic technology-assisted rapid proteolysis for high-throughput proteome analysis (대량 발굴 프로테옴 분석을 위한 어쿠스틱 기술 기반 고속 단백질 절편화)

  • Kim, Bo-Ra;Huyen, Trang Tran;Han, Na-Young;Park, Jong-Moon;Yu, Ung-Sik;Lee, Hoo-Keun
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.510-518
    • /
    • 2011
  • Recent developments and improvements of multiple technological elements including mass spectrometry (MS) instrument, multi-dimensional chromatographic separation, and software tools processing MS data resulted in benefits of large scale proteomics analysis. However, its throughput is limited by the speed and reproducibility of the protein digestion process. In this study, we demonstrated a new method for rapid proteolytic digestion of proteins using acoustic technology. Tryptic digests of BSA prepared at various conditions by super acoustic for optimization time and intensity were analyzed by LC-MS/MS showed higher sequence coverage in compared with traditional 16 hrs digestion method. The method was applied successfully for complex proteins of a breast cancer cells at 30 min of digestion at intensity 2. This new application reduces time-consuming of sample preparation with better efficiency, even with large amount of proteins, and increases high-throughput process in sample preparation state.

Potential Importance of Proteomics in Research of Reproductive Biology (생식생물학에세 프로테오믹스의 응용)

  • Kim Ho-Seung;Yoon Yong-Dal
    • Development and Reproduction
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • The potential importance of proteomic approaches has been clearly demonstrated in other fields of human medical research, including liver and heart disease and certain forms of cancer. However, reproductive researches have been applied to proteomics poorly. Proteomics can be defined as the systematic analysis of proteins for their identity, quantity, and function. It could increase the predictability of early drug development and identify non-invasive biomarkers of toxicity or efficacy. Proteome analysis is most commonly accomplished by the combination of two-dimensional gel electrophoresis(2DE) and MALDI-TOF(matrix-assisted laser desorption ionization-time of flight) MS(mass spectrometry) or protein chip array and SELDI-TOF(surface-enhanced laser desorption ionization-time of flight) MS. In addition understanding the possessing knowledge of the developing biomarkers used to assess reproductive biology will also be essential components relevant to the topic of reproduction. The continued integration of proteomic and genomic data will have a fundamental impact on our understanding of the normal functioning of cells and organisms and will give insights into complex cellular processes and disease and provides new opportunities for the development of diagnostics and therapeutics. The challenge to researchers in the field of reproduction is to harness this new technology as well as others that are available to a greater extent than at present as they have considerable potential to greatly improve our understanding of the molecular aspects of reproduction both in health and disease.

  • PDF

Proteomics of Liver Tissues of Bombina orientalis Following Exposure to Nonylphenol (Proteomics를 이용한 내분비계장애물질인 nonylphenol에 노출된 무당개구리의 단백질 발현 비교 연구)

  • Kim, Ho-Seung;Gye, Myung-Chan
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.369-374
    • /
    • 2003
  • Nonylphenol (NP), an well known aquatic contaminant, has been known to induce abnormalities in various aquatic animals. In an effort to develop proteome in the study of aquatic contamination of NP and its impact on the amphibia, protein changes in liver tissues of Korean red bellied frog, Bombina orientalis was investigated following the NP exposure. NP was administered intraperitoneally to male B. orientalis at 10 mg/kg body weight. At 48 and 96h after the treatment, the frog livers were sampled, and the protein fraction was separated using two dimensional gel electrophoresis (2D/E) and visualized with Coomassie brilluant blue staining. The 2D/E Images of the tissue from the animals treated with NP showed marked changes of protein spots (about 20% of total protein spots). Analysis of the 50-60 separated spots allowed identification of the major protein changes in the overall pattern for the stressor (NP) by time (0,48 and 96 h). At 48h after treatment, 8 spots were increased and 12 spots were reduced. Then, at 96h after treatment, 10 spots were increased and 8 spots were reduced. In total, approximately 29% of liver proteins showed the altered expression following the NP treatment. It is suggested that protein expression was repressed by blocking of certain metabolisms at 48 hand induced by the synthesis of new proteins for adaptation at 96 h following NP exposure. This application for 2D/E analysis may show promise in searching biomarkers for environmental proteomics in amphibians.

Proteomic Analysis and the Antimetastatic Effect of N-(4methyl)phenyl-O-(4-methoxy) phenyl-thionocarbamate-Induced Apoptosis in Human Melanoma SK-MEL-28 cells

  • Choi Su-La;Choi Yun-Sil;Kim Young-Kwan;Sung Nack-Do;Kho Chang-Won;Park Byong-Chul;Kim Eun-Mi;Lee Jung-Hyung;Kim Kyung-Mee;Kim Min-Yung;Myung Pyung-Keun
    • Archives of Pharmacal Research
    • /
    • v.29 no.3
    • /
    • pp.224-234
    • /
    • 2006
  • We employed human SK-MEL-28 cells as a model system to identify cellular proteins that accompany N-(4-methyl)phenyl-O-(4-methoxy)phenyl-thionocarbamate (MMTC)-induced apoptosis based on a proteomic approach. Cell viability tests revealed that SK-MEL-28 skin cancer cells underwent more cell death than normal HaCaT cells in a dose-dependent manner after treatment with MMTC. Two-dimensional electrophoresis in conjunction with matrixassisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry analysis or computer matching with a protein database further revealed that the MMTC-induced apoptosis is accompanied by increased levels of caspase-1, checkpoint suppressor-1, caspase-4, NF-kB inhibitor, AP-2, c-Jun-N-terminal kinase, melanoma inhibitor, granzyme K, G1/S specific cyclin D3, cystein rich protein, Ras-related protein Rab-37 or Ras-related protein Rab-13, and reduced levels of EMS (oncogene), ATP synthase, tyrosine-phosphatase, Cdc25c, 14-3-3 protein or specific structure of nuclear receptor. The migration suppressing effect of MMTC on SK-MEL-28 cell was tested. MMTC suppressed the metastasis of SK-MEL-8 cells. It was also identified that MMTC had little angiogenic effect because it did not suppress the proliferation of HUVEC cell line. These results suggest that MMTC is a novel chemotherapeutic and metastatic agents against the SK-MEL-28 human melanoma cell line.

Proteomic analysis of Korean mothers' human milk at different lactation stages; postpartum 1, 3, and 6 weeks (출산 후 경과한 날에 따른 한국인 산모의 모유 단백체 분석)

  • Park, Jong-Moon;lee, Hookeun;Song, Seunghyun;Hahn, Won-Ho;Kim, Mijeong;Lee, Joohyun;Kang, Nam Mi
    • Analytical Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.348-354
    • /
    • 2017
  • In this study, patterns of proteome expression were monitored and specifically expressed proteins in human milk were detected in collected human milk after 1 week, 3 weeks, and 6 weeks from delivery. A quantitative shotgun proteomic approach was used to identify human milk proteins and reveal their relative expression amounts. For each sample, two independent human milk samples from two mothers were pooled, and then three replicated shotgun proteomic analyses were carried out. Casein, which is a highly abundant protein in human milk, was removed, and then trypsin was treated to produce a digested peptide mixture. The peptides were loaded in the home-made reversed-phase C18 fused-silica capillary column, and then the eluted peptides were analyzed by using a linear ion-trap mass spectrometer. The relative quantitation of proteins was performed by the normalized spectral count method. For each sample, 81-109 non-redundant proteins were identified. The identified proteins consisted of glycoproteins, metabolic enzyme, and chaperon enzymes such as lactoferrin, carboxylic ester hydrolase, and clusterin. The comparative analysis for the 63 proteins, which were reproducibly identified in all three replications, revealed that 25 proteins were statically significant differentially expressed. Among the differentially expressed proteins, Ig lambda-7 chain C region and tenascin drastically decreased with the delivery time.

A Mutant Arthrospira platensis M20CJK3 Showing Enhanced Growth Rate and Floatation Activity (생장 및 부상성이 향상된 남세균 돌연변이 균주 Arthrospira platensis M20CJK3)

  • Yoo, Chan;Kim, Choong-Jae;Choi, Gang-Guk;Ahn, Chi-Yong;Choi, Jong-Soon;Oh, Hee-Mock
    • Korean Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.268-274
    • /
    • 2009
  • A photosynthetic cyanobacterium Arthrospira platensis, well known for health food supplement, was studied as a target species for atmospheric $CO_2$ removal as well as biomass production. Although the biomass of A. platensis was massively produced in many countries, the recovery cost of its biomass is still high. The purpose of this study was to develop the A. platensis mutant strains which have enhanced growth rate and floatation activity to reduce the recovery cost. A. platensis KCTC AG20590 was treated with 0.24% ethyl methanesulfonate (EMS) for 20 min at room temperature. The mutant strain A. platensis M20CJK3 was finally selected by its morphological and physiological features. The morphology of the mutant A. platensis M20CJK3 was changed from loose-coiled form to tight-coiled form showing short pitch. The growth and $CO_2$ uptake rate of A. platensis M20CJK3 were improved about 15% and 17% compared with A. platensis KCTC AG20590, respectively. The floatation activity of A. platensis M20CJK3 was enhanced in 2-fold compared with that of A. platensis KCTC AG20590. Soluble proteins extracted from two strains were analyzed by two dimensional electrophoresis (2-DE) and MALDI-TOF MS/MS. Among 15 protein spots induced in 2-DE analysis, two spots were the proteins related to photosynthesis and electron transfer system of the other cyanobacteria. As a consequence, it seems that the tight-coiled mutant A. platensis M20CJK3 has an advantage of high growth rate and floatation activity which are beneficial for the mass cultivation and recovery.

Integrative analysis of cellular responses of Pseudomonas sp. HK-6 to explosive RDX using its xenA knockout mutant (Pseudomonas sp. HK-6의 xenA 돌연변이체를 이용하여 RDX 폭약에 노출된 세포반응들의 통합적 분석)

  • Lee, Bheong-Uk;Choi, Moon-Seop;Seok, Ji-Won;Oh, Kye-Heon
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.343-353
    • /
    • 2018
  • Our previous research demonstrated the essential role of the xenB gene in stress response to RDX by using Pseudomonas sp. HK-6 xenB knockout. We have extended this work to examine the cellular responses and altered proteomic profiles of the HK-6 xenA knockout mutant under RDX stress. The xenA mutant degraded RDX about 2-fold more slowly and its growth and survival rates were several-fold lower than the wild-type HK-6 strain. SEM revealed more severe morphological damages on the surface of the xenA mutant cells under RDX stress. The wild-type cells expressed proportionally-increased two stress shock proteins, DnaK and GroEL from the initial incubation time point or the relatively low RDX concentrations, but slightly less expressed at prolonged incubation period or higher RDX. However the xenA mutant did not produced DnaK and GroEL as RDX concentrations were gradually increased. The wild-type cells well maintained transcription levels of dnaA and groEL under increased RDX stress while those in the xenA mutant were decreased and eventually disappeared. The altered proteome profiles of xenA mutant cells under RDX stress also observed so that the 27 down-regulated plus the 3 up-regulated expression proteins were detected in 2-DE PAGE. These all results indicated that the intact xenA gene is necessary for maintaining cell integrity under the xenobiotic stress as well as performing an efficient RDX degradation process.

N-glycoproteomic analysis of human follicular fluid during natural and stimulated cycles in patients undergoing in vitro fertilization

  • Lim, Hee-Joung;Seok, Ae Eun;Han, Jiyou;Lee, Jiyeong;Lee, Sungeun;Kang, Hee-Gyoo;Cha, Byung Heun;Yang, Yunseok
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.44 no.2
    • /
    • pp.63-72
    • /
    • 2017
  • Objective: Hyperstimulation methods are broadly used for in vitro fertilization (IVF) in patients with infertility; however, the side effects associated with these therapies, such as ovarian hyperstimulation syndrome (OHSS), have not been well studied. N-glycoproteomes are subproteomes used for the remote sensing of ovarian stimulation in follicular growth. Glycoproteomic variation in human follicular fluid (hFF) has not been evaluated. In this study, we aimed to identify and quantify the glycoproteomes and N-glycoproteins (N-GPs) in natural and stimulated hFF using label-free nano-liquid chromatography/electrospray ionization-quad time-of-flight mass spectrometry. Methods: For profiling of the total proteome and glycoproteome, pooled protein samples from natural and stimulated hFF samples were selectively isolated using hydrazide chemistry to obtain the total proteomes and glycoproteomes. N-GPs were validated by the consensus sequence N-X-S/T (92.2% specificity for the N-glycomotif at p<0.05). All data were compared between natural versus hyperstimulated hFF samples. Results: We detected 41 and 44 N-GPs in the natural and stimulated hFF samples, respectively. Importantly, we identified 11 N-GPs with greater than two-fold upregulation in stimulated hFF samples compared to natural hFF samples. We also validated the novel N-GPs thyroxine-binding globulin, vitamin D-binding protein, and complement proteins C3 and C9. Conclusion: We identified and classified N-GPs in hFF to improve our understanding of follicular physiology in patients requiring assisted reproduction. Our results provided important insights into the prevention of hyperstimulation side effects, such as OHSS.