• Title/Summary/Keyword: Protein-protein Docking

Search Result 209, Processing Time 0.019 seconds

Pharmacological Comparison of Timosaponin A III on the 5-beta Reductase and Androgen Receptor via In Silico Molecular Docking Approach (In silico 약리학적 분석을 통한 티모사포닌 A III의 5-베타 리덕타아제 단백질 및 안드로겐 수용체 단백질 활성 부위에 대한 결합 친화도 비교 연구)

  • Kim, Dong-Chan
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.307-313
    • /
    • 2018
  • Alopecia cause psychological stress due to their effect on appearance. Thus, the global market size of the alopecia treatment products are growing quickly. Timosaponin A III is the well known active ingredient of Anemarrhenae Rhizoma. In this study, we investigated and compared the binding affinity of timosaponin A III with finasteride (5-beta reductase antagonist) and minoxidil (androgen receptor antagonist) on the target protein active site by in silico computational docking studies. The three dimensional crystallographic structure of 5-beta reductase (PDB ID : 3G1R) and androgen receptor (PDB ID: 4K7A) was obtained from PDB database. In silico computational autodocking analysis was performed using PyRx, Autodock Vina, Discovery Studio Version 4.5, and NX-QuickPharm option based on scoring functions. The timosaponin A III showed optimum binding affinity (docking energy) with 5-beta reductase as -12.20 kcal/mol as compared to the finasteride (-11.70 kcal/mol) and with androgen receptor as -9.00 kcal/mol as compared to the minoxidil (-7.40 kcal/mol). The centroid X, Y, Z grid position of the timosaponin A III on the 5-beta reductase was similar (overlap) to the finasteride, but the X, Y, Z centroid grid of the timosaponin A III on the androgen receptor was significantly far from the minoxidil centroid position. These results significantly indicated that timosaponin A III could be more potent antagonist to the 5-beta reductase and androgen receptor. Therefore, the extract of Anemarrhenae Rhizoma or timosaponin A III containing biomaterials can substitute the finasteride and minoxidil and can be applied to the alopecia protecting product and related industrial fields.

Protein target identification of ginsenosides in skeletal muscle tissues: discovery of natural small-molecule activators of muscle-type creatine kinase

  • Chen, Feiyan;Zhu, Kexuan;Chen, Lin;Ouyang, Liufeng;Chen, Cuihua;Gu, Ling;Jiang, Yucui;Wang, Zhongli;Lin, Zixuan;Zhang, Qiang;Shao, Xiao;Dai, Jianguo;Zhao, Yunan
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.461-474
    • /
    • 2020
  • Background: Ginseng effectively reduces fatigue in both animal models and clinical trials. However, the mechanism of action is not completely understood, and its molecular targets remain largely unknown. Methods: By screening for proteins that interact with the primary components of ginseng (ginsenosides) in an affinity chromatography assay, we have identified muscle-type creatine kinase (CK-MM) as a potential target in skeletal muscle tissues. Results: Biolayer interferometry analysis showed that ginsenoside metabolites, instead of parent ginsenosides, had direct interaction with recombinant human CK-MM. Subsequently, 20(S)-protopanaxadiol (PPD), which is a ginsenoside metabolite and displayed the strongest interaction with CK-MM in the study, was selected as a representative to confirm direct binding and its biological importance. Biolayer interferometry kinetics analysis and isothermal titration calorimetry assay demonstrated that PPD specifically bound to human CK-MM. Moreover, the mutation of key amino acids predicted by molecular docking decreased the affinity between PPD and CK-MM. The direct binding activated CK-MM activity in vitro and in vivo, which increased the levels of tissue phosphocreatine and strengthened the function of the creatine kinase/phosphocreatine system in skeletal muscle, thus buffering cellular ATP, delaying exercise-induced lactate accumulation, and improving exercise performance in mice. Conclusion: Our results suggest a cellular target and an initiating molecular event by which ginseng reduces fatigue. All these findings indicate PPD as a small molecular activator of CK-MM, which can help in further developing better CK-MM activators based on the dammarane-type triterpenoid structure.

Pharmacophore Modeling, Virtual Screening and Molecular Docking Studies for Identification of New Inverse Agonists of Human Histamine H1 Receptor

  • Thangapandian, Sundarapandian;Krishnamoorthy, Navaneethakrishnan;John, Shalini;Sakkiah, Sugunadevi;Lazar, Prettina;Lee, Yu-No;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.52-58
    • /
    • 2010
  • Human histamine H1 receptor (HHR1) is a G protein-coupled receptor and a primary target for antiallergic therapy. Here, the ligand-based three-dimensional pharmacophore models were built from a set of known HHR1 inverse agonists using HypoGen module of CATALYST software. All ten generated pharmacophore models consist of five essential features: hydrogen bond acceptor, ring aromatic, positive ionizable and two hydrophobic functions. Best model had a correlation coefficient of 0.854 for training set compounds and it was validated with an external test set with a high correlation value of 0.925. Using this model Maybridge database containing 60,000 compounds was screened for potential leads. A rigorous screening for drug-like compounds unveiled RH01692 and SPB00834, two novel molecules for HHR1 with good CATALYST fit and estimated activity values. The new lead molecules were docked into the active site of constructed HHR1 homology model based on recently crystallized squid rhodopsin as template. Both the hit compounds were found to have critical interactions with Glu177, Phe432 and other important amino acids. The interpretations of this study may effectively be deployed in designing of novel HHR1 inverse agonists.

A Novel Pyruvate Kinase M2 Activator Compound that Suppresses Lung Cancer Cell Viability under Hypoxia

  • Kim, Dong Joon;Park, Young Soo;Kim, Nam Doo;Min, Sang Hyun;You, Yeon-Mi;Jung, Yuri;Koo, Han;Noh, Hanmi;Kim, Jung-Ae;Park, Kyung Chan;Yeom, Young Il
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.373-379
    • /
    • 2015
  • Pyruvate kinase M2 isoform (PKM2), a rate-limiting enzyme in the final step of glycolysis, is known to be associated with the metabolic rewiring of cancer cells, and considered an important cancer therapeutic target. Herein, we report a novel PKM2 activator, PA-12, which was identified via the molecular docking-based virtual screening. We demonstrate that PA-12 stimulates the pyruvate kinase activity of recombinant PKM2 in vitro, with a half-maximal activity concentration of $4.92{\mu}M$, and effectively suppresses both anchorage-dependent and -independent growth of lung cancer cells in non-essential amino acid-depleted medium. In addition, PA-12 blocked the nuclear translocalization of PKM2 in lung cancer cells, resulting in the inhibition of hypoxia response element (HRE)-mediated reporter activity as well as hypoxia-inducible factor 1 (HIF-1) target gene expression, eventually leading to the suppression of cell viability under hypoxia. We also verified that the effects of PA-12 were dependent on PKM2 expression in cancer cells, demonstrating the specificity of PA-12 for PKM2 protein. Taken together, our data suggest that PA-12 is a novel and potent PKM2 activator that has therapeutic implications for lung cancer.

Ginsenoside Rg5 overcomes chemotherapeutic multidrug resistance mediated by ABCB1 transporter: in vitro and in vivo study

  • Feng, Sen-Ling;Luo, Hai-Bin;Cai, Liang;Zhang, Jie;Wang, Dan;Chen, Ying-Jiang;Zhan, Huan-Xing;Jiang, Zhi-Hong;Xie, Ying
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.247-257
    • /
    • 2020
  • Background: Multidrug resistance (MDR) to chemotherapy drugs remains a major challenge in clinical cancer treatment. Here we investigated whether and how ginsenoside Rg5 overcomes the MDR mediated by ABCB1 transporter in vitro and in vivo. Methods: Cytotoxicity and colon formation as well as the intracellular accumulation of ABCB1 substrates were carried out in MDR cancer cells A2780/T and A549/T for evaluating the reversal effects of Rg5. The expressions of ABCB1 and Nrf2/AKT pathway were determined by Western blotting. An A549/T cell xenograft model was established to investigate the MDR reversal activity of Rg5 in vivo. Results: Rg5 significantly reversed ABCB1-mediated MDR by increasing the intracellular accumulation of ABCB1 substrates without altering protein expression of ABCB1. Moreover, Rg5 activated ABCB1 ATPase and reduced verapamil-stimulated ATPase activity, suggesting a high affinity of Rg5 to ABCB1 binding site which was further demonstrated by molecular docking analysis. In addition, co-treatment of Rg5 and docetaxel (TXT) suppressed the expression of Nrf2 and phosphorylation of AKT, indicating that sensitizing effect of Rg5 associated with AKT/Nrf2 pathway. In nude mice bearing A549/T tumor, Rg5 and TXT treatment significantly suppressed the growth of drug-resistant tumors without increase in toxicity when compared to TXT given alone at same dose. Conclusion: Therefore, combination therapy of Rg5 and chemotherapy drugs is a strategy for the adjuvant chemotherapy, which encourages further pharmacokinetic and clinical studies.

Impact of NR1I2, adenosine triphosphate-binding cassette transporters genetic polymorphisms on the pharmacokinetics of ginsenoside compound K in healthy Chinese volunteers

  • Zhou, Luping;Chen, Lulu;Wang, Yaqin;Huang, Jie;Yang, Guoping;Tan, Zhirong;Wang, Yicheng;Liao, Jianwei;Zhou, Gan;Hu, Kai;Li, Zhenyu;Ouyang, Dongsheng
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.460-474
    • /
    • 2019
  • Background: Ginsenoside compound K (CK) is a promising drug candidate for rheumatoid arthritis. This study examined the impact of polymorphisms in NR1I2, adenosine triphosphate-binding cassette (ABC) transporter genes on the pharmacokinetics of CK in healthy Chinese individuals. Methods: Forty-two targeted variants in seven genes were genotyped in 54 participants using Sequenom MassARRAY system to investigate their association with major pharmacokinetic parameters of CK and its metabolite 20(S)-protopanaxadiol (PPD). Subsequently, molecular docking was simulated using the AutoDock Vina program. Results: ABCC4 rs1751034 TT and rs1189437 TT were associated with increased exposure of CK and decreased exposure of 20(S)-PPD, whereas CFTR rs4148688 heterozygous carriers had the lowest maximum concentration ($C_{max}$) of CK. The area under the curve from zero to the time of the last quantifiable concentration ($AUC_{last}$) of CK was decreased in NR1I2 rs1464602 and rs2472682 homozygous carriers, while $C_{max}$ was significantly reduced only in rs2472682. ABCC4 rs1151471 and CFTR rs2283054 influenced the pharmacokinetics of 20(S)-PPD. In addition, several variations in ABCC2, ABCC4, CFTR, and NR1I2 had minor effects on the pharmacokinetics of CK. Quality of the best homology model of multidrug resistance protein 4 (MRP4) was assessed, and the ligand interaction plot showed the mode of interaction of CK with different MRP4 residues. Conlusion: ABCC4 rs1751034 and rs1189437 affected the pharmacokinetics of both CK and 20(S)-PPD. NR1I2 rs1464602 and rs2472682 were only associated with the pharmacokinetics of CK. Thus, these hereditary variances could partly explain the interindividual differences in the pharmacokinetics of CK.

Ginsengenin derivatives synthesized from 20(R)-panaxotriol: Synthesis, characterization, and antitumor activity targeting HIF-1 pathway

  • Guo, Hong-Yan;Xing, Yue;Sun, Yu-Qiao;Liu, Can;Xu, Qian;Shang, Fan-Fan;Zhang, Run-Hui;Jin, Xue-Jun;Chen, Fener;Lee, Jung Joon;Kang, Dongzhou;Shen, Qing-Kun;Quan, Zhe-Shan
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.738-749
    • /
    • 2022
  • Background: Ginseng possesses antitumor effects, and ginsenosides are considered to be one of its main active chemical components. Ginsenosides can further be hydrolyzed to generate secondary saponins, and 20(R)-panaxotriol is an important sapogenin of ginsenosides. We aimed to synthesize a new ginsengenin derivative from 20(R)-panaxotriol and investigate its antitumor activity in vivo and in vitro. Methods: Here, 20(R)-panaxotriol was selected as a precursor and was modified into its derivatives. The new products were characterized by 1H-NMR, 13C-NMR and HR-MS and evaluated by molecular docking, MTT, luciferase reporter assay, western blotting, immunofluorescent staining, colony formation assay, EdU labeling and immunofluorescence, apoptosis assay, cells migration assay, transwell assay and in vivo antitumor activity assay. Results: The derivative with the best antitumor activity was identified as 6,12-dihydroxy-4,4,8,10,14-pentamethyl-17-(2,6,6-trimethyltetrahydro-2H-pyran-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl(tert-butoxycarbonyl)glycinate (A11). The focus of this research was on the antitumor activity of the derivatives. The efficacy of the derivative A11 (IC50 < 0.3 µM) was more than 100 times higher than that of 20(R)- panaxotriol (IC50 > 30 µM). In addition, A11 inhibited the protein expression and nuclear accumulation of the hypoxia-inducible factor HIF-1α in HeLa cells under hypoxic conditions in a dose-dependent manner. Moreover, A11 dose-dependently inhibited the proliferation, migration, and invasion of HeLa cells, while promoting their apoptosis. Notably, the inhibition by A11 was more significant than that by 20(R)-panaxotriol (p < 0.01) in vivo. Conclusion: To our knowledge, this is the first study to report the production of derivative A11 from 20(R)-panaxotriol and its superior antitumor activity compared to its precursor. Moreover, derivative A11 can be used to further study and develop novel antitumor drugs.

Solid Phase Synthesis of N-(3-hydroxysulfonyl)-L-homoserine Lactone Derivatives and their Inhibitory Effects on Quorum Sensing Regulation in Vibrio harveyi (고체상 합성법에 의해 합성된 N-(3-hydroxysulfonyl)-L-homoserine Lactone 유사체들의 Vibrio harveyi 쿼럼 센싱에 대한 저해 효과)

  • Kim, Cheol-Jin;Park, Hyung-Yeon;Kim, Jae-Eun;Park, Hee-Jin;Lee, Bon-Su;Choi, Yu-Sang;Lee, Joon-Hee;Yoon, Je-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.3
    • /
    • pp.248-257
    • /
    • 2009
  • The inhibitors against Vibrio harveyi quorum sensing (QS) signaling were developed by modifying the molecular structure of the major signal, N-3-hydroxybutanoyl-L-homoserine lactone (3-OH-$C_4$-HSL). A series of structural derivatives, N-(3-hydroxysulfonyl)-L-homoserine lactones (HSHLs) were synthesized by the solid-phase organic synthesis method. The in vivo QS inhibition by these compounds was measured by a bioassay system using the V. harveyi bioluminescence, and all showed significant inhibitory effects. To analyze the interaction between these compounds and LuxN, a 3-OH-$C_4$-HSL receptor protein of V. harveyi, we tentatively determined the putative signal binding domain of LuxN based on the sequence homology with other acyl-HSL binding proteins, and predicted the partial 3-D structure of the putative signal binding domain of LuxN by using ORCHESTRA program, and further estimated the binding poses and energies (docking scores) of 3-OH-$C_4$-HSL and HSHLs within the domain. In comparison of the result from this modeling study with that of in vivo bioassay, we suggest that the in silica interpretation of the interaction between ligands and their receptor proteins can be a valuable way to develop better competitive inhibitors, especially in the case that the structural information of the protein is limited.

Design of MAHA Supercomputing System for Human Genome Analysis (대용량 유전체 분석을 위한 고성능 컴퓨팅 시스템 MAHA)

  • Kim, Young Woo;Kim, Hong-Yeon;Bae, Seungjo;Kim, Hag-Young;Woo, Young-Choon;Park, Soo-Jun;Choi, Wan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.2
    • /
    • pp.81-90
    • /
    • 2013
  • During the past decade, many changes and attempts have been tried and are continued developing new technologies in the computing area. The brick wall in computing area, especially power wall, changes computing paradigm from computing hardwares including processor and system architecture to programming environment and application usage. The high performance computing (HPC) area, especially, has been experienced catastrophic changes, and it is now considered as a key to the national competitiveness. In the late 2000's, many leading countries rushed to develop Exascale supercomputing systems, and as a results tens of PetaFLOPS system are prevalent now. In Korea, ICT is well developed and Korea is considered as a one of leading countries in the world, but not for supercomputing area. In this paper, we describe architecture design of MAHA supercomputing system which is aimed to develop 300 TeraFLOPS system for bio-informatics applications like human genome analysis and protein-protein docking. MAHA supercomputing system is consists of four major parts - computing hardware, file system, system software and bio-applications. MAHA supercomputing system is designed to utilize heterogeneous computing accelerators (co-processors like GPGPUs and MICs) to get more performance/$, performance/area, and performance/power. To provide high speed data movement and large capacity, MAHA file system is designed to have asymmetric cluster architecture, and consists of metadata server, data server, and client file system on top of SSD and MAID storage servers. MAHA system softwares are designed to provide user-friendliness and easy-to-use based on integrated system management component - like Bio Workflow management, Integrated Cluster management and Heterogeneous Resource management. MAHA supercomputing system was first installed in Dec., 2011. The theoretical performance of MAHA system was 50 TeraFLOPS and measured performance of 30.3 TeraFLOPS with 32 computing nodes. MAHA system will be upgraded to have 100 TeraFLOPS performance at Jan., 2013.