단백질의 기능을 유추할 수 있는 중요한 정보중의 하나는 단백질이 존재하는 세포내 위치이다. 최근에는 하나의 단백질이 동시에 존재하는 여러 세포내 위치를 예측하는 연구가 활발하다. 본 논문에서는 단백질이 존재하는 세포내의 다중위치를 예측하기 위해서 레이블 멱집합 방법을 개선한다. 레이블 멱집합 방법으로 분류한 다중위치들을 예측 확률에 따라 결합하여 최종적인 다중레이블로 분류한다. 각 다중위치에 대한 정확한 확률적 기여를 구하기 위하여 쌍별 비교와 오류정정 출력코드를 사용한 다중클래스 확률추정 방법을 적용하였다. 단백질 세포내 위치 예측 실험에 제안한 방법을 적용하여 성능이 향상됨을 보였다.
단백질의 세포 내 위치를 인식하는 것은 생물학 현상의 기술에 있어서 필수적이다. 생물학 문서의 양이 늘어남에 따라, 단백질의 세포 내 위치 정보를 문서 내용으로부터 얻기 위한 연구들이 많이 이루어졌다. 기존의 논문들은 문장의 구문 정보를 이용하여 정보를 얻고자 하였으며, 언어학적 정보가 단백질의 세포 내 위치를 인식하는 데 유용하다고 주장하고 있다. 그러나, 이전의 시스템들은 구문 정보를 얻기 위해 부분 구문분석기만을 사용하였고 재현율이 좋지 못했다. 그러므로 단백질의 세포 내 위치 정보를 얻기 위해 전체 구문분석기를 사용할 필요가 있다. 또한, 더 많은 언어학적 정보를 위해 의미 정보 또한 사용이 가능하다. 단백질의 세포 내 위치 정보를 인식하는 성능을 향상시키기 위하여, 본 논문은 전체 구문분석기와 어휘망(WordNet)을 기반으로 한 방법을 제안한다. 첫 번째 단계에서, 각 단백질 단어로부터 그 단백질의 위치후보에까지 이르는 구문 의존 경로를 구축한다. 두 번째 단계에서, 구문의존 경로의 루트 정보를 추출한다. 마지막으로, 단백질 부분트리와 위치 부분트리의 구문-의미 패턴을 추출한다. 구문 의존 경로의 루트와 부분트리로부터 구문태그와 구문방향을 구문 정보로서 추출하고, 각 노드 단어의 의미태그를 의미 정보로서 추출한다. 의미태그로는 어휘망의 동의어 집합(synset)을 사용한다. 학습데이터에서 추출한 루트 정보와 부분트리의 구문-의미 패턴에 따라서, 실험데이터에서 (단백질, 위치) 쌍들을 추출했다. 어떤 생물학적 지식 없이, 본 논문의 방법은 메드라인(Medline) 요약 데이터를 사용한 실험 결과에서 학습데이터에 대해 74.53%의 조화평균(F-measure), 실험데이터에 대해서는 58.90%의 조화평균을 보였다. 이 실험은 기존의 방법들보다 12-25%의 성능향상을 보였다.
단백질이 존재하는 세포내 위치에 대한 지식은 단백질의 기능과 관련된 중요한 정보이다. 본 논문은 개선된 레이블 멱집합 다중레이블 분류방법을 제안하여 단백질이 존재하는 세포내의 다중 위치를 예측한다. 다중레이블 분류 방법 중에서 레이블 멱집합 방법은 특정 생물학적 기능을 수행하는 단백질의 세포내 위치간의 연관 관계를 효과적으로 모델링할 수 있다. 본 논문은 다중레이블을 다른 다중레이블들의 선형조합으로 나타낼 때의 조합가중치를 제약조건이 있는 최적화를 통하여 구하고, 이를 사용하여 여러 다중레이블의 예측 확률들을 조합하여 최종적인 예측을 수행한다. 인간 단백질 자료에 대한 실험에서 제안한 방법이 다른 단백질 세포내 위치 예측 방법에 비하여 높은 성능을 보였다. 이는 제안한 방법이 레이블 멱집합 방법에서 사용되는 다중레이블들내에 존재하는 중복 정보를 이용하여 다중 레이블의 예측확률을 성공적으로 강화할 수 있기 때문이다.
In this paper, a novel approach, ELM-PCA, is introduced for the first time to predict protein subcellular localization. Firstly, Protein Samples are represented by the pseudo amino acid composition (PseAAC). Secondly, the principal component analysis (PCA) is employed to extract essential features. Finally, the Elman Recurrent Neural Network (RNN) is used as a classifier to identify the protein sequences. The results demonstrate that the proposed approach is effective and practical.
To analyze subcellular localization of betanodavirus protein B2, a plasmid expressing Betanodavirus protein B2 fused to enhanced green fluorescent protein (EGFP-Nl) was constructed. The transient expression of full-length B2 fused to EGFP in GF cells confirmed the equal distribution of protein B2 between cytoplasm and nucleus. However, transfection of N-terminal half of the B2 revealed that this truncated form predominantly localized to the cytoplasm. By using several deletion mutants and point mutants, we determined the regions and/or motif responsible for the subcellular localization of betanodavirus.
Subcellular localization of protein kinase often plays an important role in determining its activity and specificity. Protein kinase C (PKC), a family of multi-gene protein kinases has long been known to be translocated to the particular cellular compartments in response to DAG or its analog phorbol esters. We used C-terminal green fluorescent protein (GFP) fusion proteins of PKC isoforms to visualize the subcellular distribution of individual PKC isoforms. Intracellular localization of PKC-GFP proteins was monitored by fluorescence microscopy after transient transfection of PKC-GFP expression vectors in the HeLa cells. In unstimulated HeLa cells, all PKC isoforms were found to be distributed throughout the cytoplasm with a few exceptions. PKC$\theta$ was mostly localized to the Golgi, and PKC$\gamma$, PKC$\delta$ and PKC$\eta$ showed cytoplasmic distribution with Golgi localization. DAG analog TPA induced translocation of PKC-GFP to the plasma membrane. PKC$\alpha$, PKC$\eta$ and PKC$\theta$ were also localized to the Golgi in response to TPA. Only PKC$\delta$ was found to be associated with the nuclear membrane after transient TPA treatment. These results suggest that specific PKC isoforms are translocated to different intracellular sites and exhibit distinct biological effects.
한국생물정보시스템생물학회 2004년도 The 3rd Annual Conference for The Korean Society for Bioinformatics Association of Asian Societies for Bioinformatics 2004 Symposium
/
pp.101-106
/
2004
Subcellular localization is a key functional char acteristic of proteins. With the number of sequences entering databanks rapidly increasing, the importance of developing a powerful tool to identify protein subcellular location has become self-evident. In this paper, we introduce a novel method for predic ting protein subcellular locations from protein sequences. The main idea was motivated from the observation that amino acid pair composition data is redundant. By classifying from multiple feature subsets and using many kinds of amino acid pair composition s, we forced the classifiers to make uncorrelated errors. Therefore when we combined the predictors using a voting scheme, the prediction accuracy c ould be improved. Experiment was conducted on several data sets and significant improvement has been achieve d in a jackknife test.
Eukaryotic cells consist of a complex network of thousands of proteins present in different organelles where organelle-specific cellular processes occur. Identification of the subcellular localization of a protein is important for understanding its potential biochemical functions. In the post-genomic era, localization of unknown proteins is achieved using multiple tools including a fluorescent-tagged protein approach. Several fluorescent-tagged protein organelle markers have been introduced into dicot plants, but its use is still limited in monocot plants. Here, we generated a set of multicolored organelle markers (fluorescent-tagged proteins) based on well-established targeting sequences. We used a series of pGWBs binary vectors to ameliorate localization and co-localization experiments using monocot plants. We constructed different fluorescent-tagged markers to visualize rice cell organelles, i.e., nucleus, plastids, mitochondria, peroxisomes, golgi body, endoplasmic reticulum, plasma membrane, and tonoplast, with four different fluorescent proteins (FPs) (G3GFP, mRFP, YFP, and CFP). Visualization of FP-tagged markers in their respective compartments has been reported for dicot and monocot plants. The comparative localization of the nucleus marker with a nucleus localizing sequence, and the similar, characteristic morphology of mCherry-tagged Arabidopsis organelle markers and our generated organelle markers in onion cells, provide further evidence for the correct subcellular localization of the Oryza sativa (rice) organelle marker. The set of eight different rice organelle markers with four different FPs provides a valuable resource for determining the subcellular localization of newly identified proteins, conducting co-localization assays, and generating stable transgenic localization in monocot plants.
In Saccharomyces cerevisiae, ribosomal protein L7, one of the ~46 ribosomal proteins of the 60S subunit, is encoded by paralogous RPL7A and RPL7B genes. The amino acid sequence identity between RPl7a and RPl7b is 97 percent; they differ by only 5 amino acid residues. Interestingly, despite the high sequence homology, Rpl7b is detected in both the cytoplasm and the nucleolus, whereas Rpl7a is detected exclusively in the cytoplasm. A site-directed mutagenesis experiment revealed that the change in the amino acid sequence of Rpl7b does not influence its subcellular localization. In addition, introns of RPL7A and RPL7B did not affect the subcellular localization of Rpl7a and Rpl7b. Remarkably, Rpl7b was detected exclusively in the cytoplasm in rpl7a knockout mutant, and overexpression of Rpl7a resulted in its accumulation in the nucleolus, indicating that the subcellular localization of Rpl7a and Rpl7b is influenced by the intracellular level of Rpl7a. Rpl7b showed a wide range of localization patterns, from exclusively cytoplasmic to exclusively nucleolar, in knockout mutants for some rRNA-processing factors, nuclear pore proteins, and large ribosomal subunit assembly factors. Rpl7a, however, was detected exclusively in the cytoplasm in these mutants. Taken together, these results suggest that although Rpl7a and Rpl7b are paralogous and functionally replaceable with each other, their precise physiological roles may not be identical.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.