DOI QR코드

DOI QR Code

Differential Subcellular Localization of Ribosomal Protein L7 Paralogs in Saccharomyces cerevisiae

  • Kim, Tae-Youl (School of Biological Sciences, and Research Center for Functional Cellulomics, Institute of Microbiology, Seoul National University) ;
  • Ha, Cheol Woong (School of Biological Sciences, and Research Center for Functional Cellulomics, Institute of Microbiology, Seoul National University) ;
  • Huh, Won-Ki (School of Biological Sciences, and Research Center for Functional Cellulomics, Institute of Microbiology, Seoul National University)
  • Received : 2008.11.24
  • Accepted : 2009.03.24
  • Published : 2009.05.31

Abstract

In Saccharomyces cerevisiae, ribosomal protein L7, one of the ~46 ribosomal proteins of the 60S subunit, is encoded by paralogous RPL7A and RPL7B genes. The amino acid sequence identity between RPl7a and RPl7b is 97 percent; they differ by only 5 amino acid residues. Interestingly, despite the high sequence homology, Rpl7b is detected in both the cytoplasm and the nucleolus, whereas Rpl7a is detected exclusively in the cytoplasm. A site-directed mutagenesis experiment revealed that the change in the amino acid sequence of Rpl7b does not influence its subcellular localization. In addition, introns of RPL7A and RPL7B did not affect the subcellular localization of Rpl7a and Rpl7b. Remarkably, Rpl7b was detected exclusively in the cytoplasm in rpl7a knockout mutant, and overexpression of Rpl7a resulted in its accumulation in the nucleolus, indicating that the subcellular localization of Rpl7a and Rpl7b is influenced by the intracellular level of Rpl7a. Rpl7b showed a wide range of localization patterns, from exclusively cytoplasmic to exclusively nucleolar, in knockout mutants for some rRNA-processing factors, nuclear pore proteins, and large ribosomal subunit assembly factors. Rpl7a, however, was detected exclusively in the cytoplasm in these mutants. Taken together, these results suggest that although Rpl7a and Rpl7b are paralogous and functionally replaceable with each other, their precise physiological roles may not be identical.

Keywords

Acknowledgement

Supported by : Korea Research Foundation, Ministry of Education, Science and Technology

References

  1. Amsterdam, A., Sadler, K.C., Lai, K., Farrington, S., Bronson, R.T., Lees, J.A., and Hopkins, N. (2004). Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol. 2, E139 https://doi.org/10.1371/journal.pbio.0020139
  2. Degenhardt, R.F., and Bonham-Smith, P.C. (2008). Arabidopsis ribosomal proteins RPL23aA and RPL23aB are differentially targeted to the nucleolus and are desperately required for normal development. Plant Physiol. 147, 128-142 https://doi.org/10.1104/pp.107.111799
  3. DeRisi, J.L., Iyer, V.R., and Brown, P.O. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680-686 https://doi.org/10.1126/science.278.5338.680
  4. Draptchinskaia, N., Gustavsson, P., Andersson, B., Pettersson, M., Willig, T.N., Dianzani, I., Ball, S., Tchernia, G., Klar, J., Matsson, H., et al. (1999). The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat. Genet 21, 169-175 https://doi.org/10.1038/5951
  5. Dresios, J., Panopoulos, P., and Synetos, D. (2006). Eukaryotic ribosomal proteins lacking a eubacterial counterpart: important players in ribosomal function. Mol. Microbiol. 59, 1651-1663 https://doi.org/10.1111/j.1365-2958.2006.05054.x
  6. Enerly, E., Larsson, J., and Lambertsson, A. (2003). Silencing the Drosophila ribosomal protein L14 gene using targeted RNA interference causes distinct somatic anomalies. Gene 320, 41-48 https://doi.org/10.1016/S0378-1119(03)00827-8
  7. Enyenihi, A.H., and Saunders, W.S. (2003). Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae. Genetics 163, 47-54
  8. Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., and Brown, P.O. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241-4257 https://doi.org/10.1091/mbc.11.12.4241
  9. Ghaemmaghami, S., Huh, W.K., Bower, K., Howson, R.W., Belle, A., Dephoure, N., O'Shea, E.K., and Weissman, J.S. (2003). Global analysis of protein expression in yeast. Nature 425, 737-741 https://doi.org/10.1038/nature02046
  10. Ghazal, G., Ge, D., Gervais-Bird, J., Gagnon, J., and Abou Elela, S. (2005). Genome-wide prediction and analysis of yeast RNase III-dependent snoRNA processing signals. Mol. Cell. Biol. 25, 2981-2994 https://doi.org/10.1128/MCB.25.8.2981-2994.2005
  11. Haarer, B., Viggiano, S., Hibbs, M.A., Troyanskaya, O.G., and Amberg, D.C. (2007). Modeling complex genetic interactions in a simple eukaryotic genome: actin displays a rich spectrum of complex haploinsufficiencies. Genes Dev. 21, 148-159 https://doi.org/10.1101/gad.1477507
  12. Huh, W.K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman, J.S., and O'Shea, E.K. (2003). Global analysis of protein localization in budding yeast. Nature 425, 686-691 https://doi.org/10.1038/nature02026
  13. Komili, S., Farny, N.G., Roth, F.P., and Silver, P.A. (2007). Functional specificity among ribosomal proteins regulates gene expression. Cell 131, 557-571 https://doi.org/10.1016/j.cell.2007.08.037
  14. Lam, Y.W., Lamond, A.I., Mann, M., and Andersen, J.S. (2007). Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr. Biol. 17, 749-760 https://doi.org/10.1016/j.cub.2007.03.064
  15. Lee, Y.L., and Lee, C.K. (2008). Transcriptional response according to strength of calorie restriction in Saccharomy cerevisiae. Mol. Cells 26, 299-307
  16. Lohrum, M.A., Ludwig, R.L., Kubbutat, M.H., Hanlon, M., and Vousden, K.H. (2003). Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 3, 577-587 https://doi.org/10.1016/S1535-6108(03)00134-X
  17. Mazumder, B., Sampath, P., Seshadri, V., Maitra, R.K., DiCorleto, P.E., and Fox, P.L. (2003). Regulated release of L13a from the 60S ribosomal subunit as a mechanism of transcript-specific translational control. Cell 115, 187-198 https://doi.org/10.1016/S0092-8674(03)00773-6
  18. Mizuta, K., Hashimoto, T., and Otaka, E. (1992). Yeast ribosomal proteins: XIII. Saccharomyces cerevisiae YL8A gene, interrupted with two introns, encodes a homolog of mammalian L7. Nucleic Acids Res. 20, 1011-1016 https://doi.org/10.1093/nar/20.5.1011
  19. Mumberg, D., Muller, R., and Funk, M. (1995). Yeast vectors for the controlled expression of heterologous proteins in different ge netic backgrounds. Gene 156, 119-122 https://doi.org/10.1016/0378-1119(95)00037-7
  20. Ni, L., and Snyder, M. (2001). A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae. Mol. Biol. Cell 12, 2147-2170 https://doi.org/10.1091/mbc.12.7.2147
  21. Planta, R.J., and Mager, W.H. (1998). The list of cytoplasmic ribosomal proteins of Saccharomy cerevisiae. Yeast 14, 471-477 https://doi.org/10.1002/(SICI)1097-0061(19980330)14:5<471::AID-YEA241>3.0.CO;2-U
  22. Rotenberg, M.O., Moritz, M., and Woolford, J.L. Jr. (1988). Depletion of Saccharomyces cerevisiae ribosomal protein L16 causes a decrease in 60S ribosomal subunits and formation of half-mer polyribosomes. Genes Dev. 2, 160-172 https://doi.org/10.1101/gad.2.2.160
  23. Sherman, F. (2002). Getting started with yeast. Methods Enzymol. 350, 3-41 https://doi.org/10.1016/S0076-6879(02)50954-X
  24. Sikorski, R.S., and Hieter, P. (1989). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19-27
  25. Sung, M.K., and Huh, W.K. (2007). Bimolecular fluorescence complementation analysis system for in vivo detection of proteinprotein interaction in Saccharomyces cerevisiae. Yeast 24, 767-775 https://doi.org/10.1002/yea.1504
  26. Sung, M.K., Ha, C.W., and Huh, W.K. (2008). A vector system for efficient and economical switching of C-terminal epitope tags in Saccharomyces cerevisiae. Yeast 25, 301-311 https://doi.org/10.1002/yea.1588
  27. Tate, W.P., and Poole, E.S. (2004). The ribosome: lifting the veil from a fascinating organelle. Bioessays 26, 582-588 https://doi.org/10.1002/bies.20022
  28. Venema, J., and Tollervey, D. (1999). Ribosome synthesis in Saccharomyces cerevisiae. Annu. Rev. Genet. 33, 261-311 https://doi.org/10.1146/annurev.genet.33.1.261
  29. Wach, A. (1996). PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 12, 259-265 https://doi.org/10.1002/(SICI)1097-0061(19960315)12:3<259::AID-YEA901>3.0.CO;2-C
  30. Wool, I.G. (1996). Extraribosomal functions of ribosomal proteins. Trends Biochem. Sci. 21, 164-165 https://doi.org/10.1016/S0968-0004(96)20011-8

Cited by

  1. Insect ornithine decarboxylase (ODC) complements SPE1 knock-out of yeast Saccharomyces cerevisiae vol.28, pp.6, 2009, https://doi.org/10.1007/s10059-009-0162-4
  2. Nonrandom Survival of Gene Conversions among Yeast Ribosomal Proteins Duplicated through Genome Doubling vol.2, pp.None, 2009, https://doi.org/10.1093/gbe/evq067
  3. Chemical-genetic profile analysis of five inhibitory compounds in yeast vol.10, pp.None, 2009, https://doi.org/10.1186/1472-6769-10-6
  4. Expression of ribosomal protein L22e family members in Drosophila melanogaster : rpL22-like is differentially expressed and alternatively spliced vol.39, pp.7, 2009, https://doi.org/10.1093/nar/gkq1218
  5. Polyploidy and the Evolution of Complex Traits vol.2012, pp.None, 2009, https://doi.org/10.1155/2012/292068
  6. Ribosome Deficiency Protects Against ER Stress in Saccharomyces cerevisiae vol.191, pp.1, 2009, https://doi.org/10.1534/genetics.111.136549
  7. Physiological adaptations of Saccharomyces cerevisiae evolved for improved butanol tolerance vol.6, pp.None, 2009, https://doi.org/10.1186/1754-6834-6-101
  8. RpL22e, but not RpL22e-like-PA, is SUMOylated and localizes to the nucleoplasm ofDrosophilameiotic spermatocytes vol.4, pp.3, 2009, https://doi.org/10.4161/nucl.25261
  9. Comparative Genomics as a Time Machine: How Relative Gene Dosage and Metabolic Requirements Shaped the Time-dependent Resolution of Yeast Polyploidy vol.31, pp.12, 2014, https://doi.org/10.1093/molbev/msu250
  10. Patterns of Gene Conversion in Duplicated Yeast Histones Suggest Strong Selection on a Coadapted Macromolecular Complex vol.7, pp.12, 2015, https://doi.org/10.1093/gbe/evv216
  11. Translational regulation in response to stress in Saccharomyces cerevisiae vol.36, pp.1, 2009, https://doi.org/10.1002/yea.3349