• 제목/요약/키워드: Protein kinase C-${\beta}$

검색결과 234건 처리시간 0.031초

Regulations of Reversal of Senescence by PKC Isozymes in Response to 12-O-Tetradecanoylphorbol-13-Acetate via Nuclear Translocation of pErk1/2

  • Lee, Yun Yeong;Ryu, Min Sook;Kim, Hong Seok;Suganuma, Masami;Song, Kye Yong;Lim, In Kyoung
    • Molecules and Cells
    • /
    • 제39권3호
    • /
    • pp.266-279
    • /
    • 2016
  • The mechanism by which 12-O-tetradecanoylphorbol-13-acetate (TPA) bypasses cellular senescence was investigated using human diploid fibroblast (HDF) cell replicative senescence as a model. Upon TPA treatment, protein kinase C (PKC) ${\alpha}$ and $PKC{\beta}1$ exerted differential effects on the nuclear translocation of cytoplasmic pErk1/2, a protein which maintains senescence. $PKC{\alpha}$ accompanied pErk1/2 to the nucleus after freeing it from $PEA-15pS^{104}$ via $PKC{\beta}1$ and then was rapidly ubiquitinated and degraded within the nucleus. Mitogen-activated protein kinase docking motif and kinase activity of $PKC{\alpha}$ were both required for pErk1/2 transport to the nucleus. Repetitive exposure of mouse skin to TPA downregulated $PKC{\alpha}$ expression and increased epidermal and hair follicle cell proliferation. Thus, $PKC{\alpha}$ downregulation is accompanied by in vivo cell proliferation, as evidenced in 7, 12-dimethylbenz(a)anthracene (DMBA)-TPA-mediated carcinogenesis. The ability of TPA to reverse senescence was further demonstrated in old HDF cells using RNA-sequencing analyses in which TPA-induced nuclear $PKC{\alpha}$ degradation freed nuclear pErk1/2 to induce cell proliferation and facilitated the recovery of mitochondrial energy metabolism. Our data indicate that TPA-induced senescence reversal and carcinogenesis promotion share the same molecular pathway. Loss of $PKC{\alpha}$ expression following TPA treatment reduces pErk1/2-activated SP1 biding to the $p21^{WAF1}$ gene promoter, thus preventing senescence onset and overcoming G1/S cell cycle arrest in senescent cells.

Stimulatory Effects of cyclic AMP on Vitellogenin Induction by Estradiol-17$\beta$ in the Primary Culture of Hepatocytes in the Rainbow Trout Oncorhynchus mykiss

  • Yeo In-Kyu
    • Fisheries and Aquatic Sciences
    • /
    • 제1권2호
    • /
    • pp.153-158
    • /
    • 1998
  • Effects of cyclic (c) AMP and G-protein related reagents (3-isobutyl-l-methyxanthine (IBMX), Forskolin (FSK), cholera toxin (CTX), and pertussis toxin (PTX≫ on estradiol-17$\beta$ induced vitellogenin (VTG) induction were examined in primary hepatocyte cultures in rainbow trout Oncorhynchus mykiss. The addition of IBMX, FSK, or CTX to the incubation medium markedly increased VTG production, while PTX was not effective in stimulating the production. It is well known that cAMP regulates phosphorylation and dephosphorylation through mediation of protein kinase A. These results suggest that VTG production is highly dependent on cAMP state in hepatocytes because of its highly phosphorylated nature.

  • PDF

Differential Alterations of Endotoxin-induced Cytokine Expression and Mitogen-activated Protein Kinase Activation by Mercury in Mouse Kidney

  • Kim, Sang-Hyun;Kim, Dae-Keun;Shin, Tae-Yong;Choi, Cheol-Hee
    • Toxicological Research
    • /
    • 제20권3호
    • /
    • pp.233-239
    • /
    • 2004
  • The present study was designed to determine the impact of mercury on endotoxin-induced inflammatory cytokine expression and corresponding signal transduction in mouse kidney. Male BALB/c mice were exposed continuously to 0, 0.3, 1.5, 7.5, or 37.5 ppm of mercury in drink-ing water for 14 days and at the end of the treatment period, lipopolysaccharide (LPS, 0.5 mg/kg) was injected intraperitoneally 2 h prior to euthanasia. The doses of mercury and LPS did not cause hepatotoxicity or renal toxicity as indicated by unaltered plasma alanine aminotransferase and aspartate aminotransferase levels, and terminal UTP nucleotide end-labeling assay from kidney, respectively. Mercury decreased kidney glutathione (GSH) and with LPS, it additively decreased GSH. Mercury activated p38 mitogen-activated protein kinase (MAPK) and additively increased LPS-induced p38 MAPK phosphorylation. In contrast, mercury inhibited LPS-induced activation of extra-cellular signal-regulated kinase (ERK) but had no effect alone. Mercury increased the gene expression of tumor necrosis factor $\alpha$ (TN F$\alpha$) and potentiated LPS-induced TNF$\alpha$ expression. Mercury did not affect LPS-induced interleukin-1$\beta$ (IL-1$\beta$) expression but decreased LPS-induced IL-6 expression. These results suggest that low levels of mercury might augment LPS-induced TNF$\alpha$ expression by altering GSH and p38 MAPK. Mercury modulates LPS-induced p38 and ERK activation, and downstream TNF$\alpha$ and IL-6 expression in kidney, respectively.

Tyrosine Kinase Inhibitor as Clinical Application Feasibility in Canine Intractable Tumor Diseases

  • Choi, Eul-Soo;Song, Joong-Hyun;Shin, Jong-Il;Sur, Jung-Hyang;Kang, Byeong-Teck;An, Su-Jin;Cho, Kyu-Woan;Jung, Dong-In
    • 한국임상수의학회지
    • /
    • 제33권4호
    • /
    • pp.187-193
    • /
    • 2016
  • A tyrosine kinase is an enzyme that can transfer a phosphate group from ATP to a protein in a cell. It functions as an "on" or "off" switch in many cellular functions. This study aims to show that the actions of growth factors associated with PDGFR-${\alpha}$, PDGFR-${\beta}$, VEGFR-2, c-KIT, and c-ABL, which are used in veterinary medicine, are expressed in canine intractable tumors. This study used archival cases of canine paraganglioma, gastrointestinal adenocarcinoma, hepatocellular carcinoma, and renal cell carcinoma. Tissues had been immunohistochemical analysis. The antibodies used were PDGFR-${\alpha}$, PDGFR-${\beta}$, c-kit, VEGFR-2, and c-Abl. PDGFR-${\alpha}$ was expressed only in HCC, and PDGFR-${\beta}$ was expressed in all tumors. VEGFR was also only expressed in HCC, and c-KIT has been expressed in HCC, paraganglioma, and small intestinal adenocarcinoma. c-Abl was expressed in all cancers, but was weakly expressed in paraganglioma, while more than moderately expressed in other tissues. In conclusion, this study investigated how TKIs used in human medicine can be applied to canine intractable tumors, through immunohistochemistry. The results indicate that there may be an application for TKIs in treating canine intractable tumors.

Imipramine Inhibits A-type Delayed Rectifier and ATP-Sensitive $K^{+}$ Currents Independent of G-Protein and Protein Kinase C in Murine Proximal Colonic Myocytes

  • Choi, Seok;Parajuli, Shankar Prasad;Lim, Geon-Han;Kim, Jin-Ho;Yeum, Cheol-Ho;Yoon, Pyung-Jin;Jun, Jae-Yeoul
    • Archives of Pharmacal Research
    • /
    • 제29권11호
    • /
    • pp.998-1005
    • /
    • 2006
  • The effects of imipramine on A-type delayed rectifier $K^{+}$ currents and ATP-sensitive $K^{+}\;(K_{ATP)$ currents were studied in isolated murine proximal colonic myocytes using the whole-cell patch-clamp technique. Depolarizing test pulses between-80 mV and +30 mV with 10 mV increments from the holding potential of-80 mV activated voltage-dependent outward $K^{+}$ currents that peaked within 50 ms followed by slow decreasing sustained currents. Early peak currents were inhibited by the application of 4-aminopyridine, whereas sustained currents were inhibited by the application of TEA. The peak amplitude of A-type delayed rectifier $K^{+}$ currents was reduced by external application of imipramine. The half-inactivation potential and the half-recovery time of A-type delayed rectifier $K^{+}$ currents were not changed by imipramine. With 0.1 mM ATP and 140 mM $K^{+}$ in the pipette and 90 mM $K^{+}$ in the bath solution and a holding potential of -80 mV, pinacidil activated inward currents; this effect was blocked by glibenclamide. Imipramine also inhibited $K_{ATP}$ currents. The inhibitory effects of imipramine in A-type delayed rectifier $K^{+}$ currents and $K_{ATP}$ currents were not changed by guanosine 5-O-(2-thiodiphosphate) ($GDP{\beta}S$) and chelerythrine, a protein kinase C inhibitor. These results suggest that imipramine inhibits A-type delayed rectifier $K^{+}$ currents and $K_{ATP}$ currents in a manner independent of G-protein and protein kinase C.

Casein Kinase 2 interacts with human mitogen- and stress-activated protein kinase MSK1 and phosphorylates it at Multiple sites

  • Shi, Yan;Han, Guanghui;Wu, Huiling;Ye, Kan;Tian, Zhipeng;Wang, Jiaqi;Shi, Huili;Ye, Mingliang;Zou, Hanfa;Huo, Keke
    • BMB Reports
    • /
    • 제42권12호
    • /
    • pp.840-845
    • /
    • 2009
  • Mitogen- and stress-activated protein kinase (MSK1) palys a crucial role in the regulation of transcription downstream of extracellular-signal-regulated kinase1/2 (ERK1/2) and mitogen-activated protein kinase p38. MSK1 can be phosphorylated and activated in cells by both ERK1/2 and p38$\alpha$. In this study, Casein Kinase 2 (CK2) was identified as a binding and regulatory partner for MSK1. Using the yeast two-hybrid system, MSK1 was found to interact with the CK2$\beta$ regulatory subunit of CK2. Interactions between MSK1 and the CK2$\alpha$ catalytic subunit and CK2$\beta$ subunit were demonstrated in vitro and in vivo. We further found that CK2$\alpha$ can only interact with the C-terminal kinase domain of MSK1. Using site-directed mutagenesis assay and mass spectrometry, we identified five sites in the MSK1 C-terminus that could be phosphorylated by CK2 in vitro: Ser757, Ser758, Ser759, Ser760 and Thr793. Of these, Ser757, Ser759, Ser760 and Thr793 were previously unknown.

Identification of phospholipase Cβ downstream effect on transient receptor potential canonical 1/4, transient receptor potential canonical 1/5 channels

  • Ko, Juyeon;Myeong, Jongyun;Kwak, Misun;Jeon, Ju-Hong;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권5호
    • /
    • pp.357-366
    • /
    • 2019
  • $G{\alpha}_q$-coupled receptor stimulation was implied in the activation process of transient receptor potential canonical (TRPC)1/4 and TRPC1/5 heterotetrameric channels. The inactivation occurs due to phosphatidylinositol 4,5-biphosphate ($PI(4,5)P_2$) depletion. When $PI(4,5)P_2$ depletion was induced by muscarinic stimulation or inositol polyphosphate 5-phosphatase (Inp54p), however, the inactivation by muscarinic stimulation was greater compared to that by Inp54p. The aim of this study was to investigate the complete inactivation mechanism of the heteromeric channels upon $G{\alpha}_q$-phospholipase $C{\beta}$ ($G{\alpha}_q-PLC{\beta}$) activation. We evaluated the activity of heteromeric channels with electrophysiological recording in HEK293 cells expressing TRPC channels. TRPC1/4 and TRPC1/5 heteromers undergo further inhibition in $PLC{\beta}$ activation and calcium/protein kinase C (PKC) signaling. Nevertheless, the key factors differ. For TRPC1/4, the inactivation process was facilitated by $Ca^{2+}$ release from the endoplasmic reticulum, and for TRPC1/5, activation of PKC was concerned mostly. We conclude that the subsequent increase in cytoplasmic $Ca^{2+}$ due to $Ca^{2+}$ release from the endoplasmic reticulum and activation of PKC resulted in a second phase of channel inhibition following $PI(4,5)P_2$ depletion.

Type 3 muscarinic acetylcholine receptor stimulation is a determinant of endothelial barrier function and adherens junctions integrity: role of protein-tyrosine phosphatase 1B

  • Jiao, Zhou-Yang;Wu, Jing;Liu, Chao;Wen, Bing;Zhao, Wen-Zeng;Du, Xin-Ling
    • BMB Reports
    • /
    • 제47권10호
    • /
    • pp.552-557
    • /
    • 2014
  • The main purpose of this study was to investigate whether type 3 muscarinic acetylcholine receptor (M3R) dysfunction induced vascular hyperpermeability. Transwell system analysis showed that M3R inhibition by selective antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) and small interfering RNA both increased endothelial permeability. Using coimmunoprecipitation and Western blot assay, we found that M3R inhibition increased VE-cadherin and ${\beta}$-catenin tyrosine phosphorylation without affecting their expression. Using PTP1B siRNA, we found that PTP1B was required for maintaining VE-cadherin and ${\beta}$-catenin protein dephosphorylation. In addition, 4-DAMP suppressed PTP1B activity by reducing cyclic adenosine monophosphate (cAMP), but not protein kinase $C{\alpha}$ ($PKC{\alpha}$). These data indicate that M3R preserves the endothelial barrier function through a mechanism potentially maintaining PTP1B activity, keeping the adherens junction proteins (AJPs) dephosphorylation.

Knockdown of endogenous SKIP gene enhanced insulin-induced glycogen synthesis signaling in differentiating C2C12 myoblasts

  • Xiong, Qi;Deng, Chang-Yan;Chai, Jin;Jiang, Si-Wen;Xiong, Yuan-Zhu;Li, Feng-E;Zheng, Rong
    • BMB Reports
    • /
    • 제42권2호
    • /
    • pp.119-124
    • /
    • 2009
  • PI(3,4,5)$P_3$ produced by the activated PI3-kinase is a key lipid second messenger in cell signaling downstream of insulin. Skeletal muscle and kidney-enriched inositol phosphatase (SKIP) identified as a 5'-inositol phosphatase that hydrolyzes PI(3,4,5) $P_3$ to PI(3,4)$P_2$, negatively regulates the insulin-induced glycogen synthesis in skeletal muscle. However the mechanism by which this occurs remains unclear. To elucidate the function of SKIP in glycogen synthesis, we employed RNAi techniques to knockdown the SKIP gene in differentiating C2C12 myoblasts. Insulininduced phosphorylation of Akt (protein kinase B) and GSK-3$\beta$ (Glycogen synthase kinase), subsequent dephosphorylation of glycogen synthase and glycogen synthesis were increased by inhibiting the expression of SKIP, whereas the insulin-induced glycogen synthesis was decreased by overexpression of WT-SKIP. Our results suggest that SKIP plays a negative regulatory role in Akt/ GSK-3$\beta$/GS (glycogen synthase) pathway leading to glycogen synthesis in myocytes.

유근피 약침액이 생쥐의 두개골 파골세포에서 골재흡수의 저해에 미치는 영향 (Effect of Ulmus Davidiana Planch Herbal Acupuncture Solution on Inhibition of Experimental Bone Resorption in Mouse Calvarial Bone Cells)

  • 강미숙;백성욱;김갑성
    • Journal of Acupuncture Research
    • /
    • 제25권2호
    • /
    • pp.119-127
    • /
    • 2008
  • 목적 : 골관절염치료에 빈용되는 유근피 약침액의 처치가 생쥐의 파골세포에 있어서 골재흡수의 저해에 미치는 영향을 알아보고자 하였다 방법 : 생쥐에게 유근피 약침액을 두개골 세포에 전, 후 처치하여 골재흡수에 대한 유근피 약침액의 억제 활성능을 검토하였다. 결론 : 염증성 cytokine 중 $IL-1{\beta}$ 유도인자인 PGE와 LPS처리로 $IL-1{\beta}$생성이 증가되었으나, 유근피 약침액 처치군은 이를 억제하였다. 유근피 약침액 전처리군에서도 $IL-1{\beta}$ 생성이 억제되었다. 유근피 약침액 처치군은 PGE2유발 $IL-1{\beta}$ 전사를 억제하였으며, PGE2 유발 $IL-1{\beta}$ 유도는 cAMP antagonist인 Rp-cAMP와 protein kinase A(PKA)저해제에 의해서도 억제되어 $IL-1{\beta}$ 발현에 cAMP, PKA 신호전달경로가 관여함을 시사하였다. 본 연구에서 유근피 약침액은 강한 항 관절염효과와 골재흡수 저해 활성이 있으며, 관절염 치료, 예방에 유의함을 밝힌 것으로 사료된다.

  • PDF