DOI QR코드

DOI QR Code

Knockdown of endogenous SKIP gene enhanced insulin-induced glycogen synthesis signaling in differentiating C2C12 myoblasts

  • Xiong, Qi (Key Laboratory of Swine Breeding and Genetics, Ministry of Agriculture, College of Animal Science and Technology, HuazhongAgricultural University) ;
  • Deng, Chang-Yan (Key Laboratory of Swine Breeding and Genetics, Ministry of Agriculture, College of Animal Science and Technology, HuazhongAgricultural University) ;
  • Chai, Jin (Key Laboratory of Swine Breeding and Genetics, Ministry of Agriculture, College of Animal Science and Technology, HuazhongAgricultural University) ;
  • Jiang, Si-Wen (Key Laboratory of Swine Breeding and Genetics, Ministry of Agriculture, College of Animal Science and Technology, HuazhongAgricultural University) ;
  • Xiong, Yuan-Zhu (Key Laboratory of Swine Breeding and Genetics, Ministry of Agriculture, College of Animal Science and Technology, HuazhongAgricultural University) ;
  • Li, Feng-E (Key Laboratory of Swine Breeding and Genetics, Ministry of Agriculture, College of Animal Science and Technology, HuazhongAgricultural University) ;
  • Zheng, Rong (Key Laboratory of Swine Breeding and Genetics, Ministry of Agriculture, College of Animal Science and Technology, HuazhongAgricultural University)
  • Published : 2009.02.28

Abstract

PI(3,4,5)$P_3$ produced by the activated PI3-kinase is a key lipid second messenger in cell signaling downstream of insulin. Skeletal muscle and kidney-enriched inositol phosphatase (SKIP) identified as a 5'-inositol phosphatase that hydrolyzes PI(3,4,5) $P_3$ to PI(3,4)$P_2$, negatively regulates the insulin-induced glycogen synthesis in skeletal muscle. However the mechanism by which this occurs remains unclear. To elucidate the function of SKIP in glycogen synthesis, we employed RNAi techniques to knockdown the SKIP gene in differentiating C2C12 myoblasts. Insulininduced phosphorylation of Akt (protein kinase B) and GSK-3$\beta$ (Glycogen synthase kinase), subsequent dephosphorylation of glycogen synthase and glycogen synthesis were increased by inhibiting the expression of SKIP, whereas the insulin-induced glycogen synthesis was decreased by overexpression of WT-SKIP. Our results suggest that SKIP plays a negative regulatory role in Akt/ GSK-3$\beta$/GS (glycogen synthase) pathway leading to glycogen synthesis in myocytes.

Keywords

References

  1. Rosenvold, K., Petersen, J. S., Lwerke, H. N., Jensen, S. K., Therkildsen, M., Karlsson, A. H., Moller, H. S. and Andersen, H. J. (2001) Muscle glycogen stores and meat quality as affected by strategic finishing feeding of slaughter pigs. J. Anim. Sci. 79, 382-391 https://doi.org/10.2527/2001.792382x
  2. Czech, M. P. and Corvera, S. (1999) Signaling mecha nisms that regulate glucose transport. J. Biol. Chem. 274, 1865-1868 https://doi.org/10.1074/jbc.274.4.1865
  3. Toker, A. S. and Macnab, R. M. (1997) Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387, 673-676 https://doi.org/10.1038/42648
  4. Ijuin, T., Mochizuki, Y., Fukami, K., Funaki, M., Asano, T. and Takenawa, T. (2000) Identification and characterization of a novel inositol polyphosphate 5-phosphatase. J. Biol. Chem. 275, 10870-10875 https://doi.org/10.1074/jbc.275.15.10870
  5. Ijuin, T. and Takenawa, T. (2003) SKIP negatively regulates insulin-induced GLUT4 translocation and membrane ruffle formation. Mol. Cell Biol. 23, 1209-1220 https://doi.org/10.1128/MCB.23.4.1209-1220.2003
  6. Saltiel, A. R. (1996) Diverse signaling pathways in the cellular actions of insulin. Am. J. Physiol. 270, 375-385
  7. Stephens, L., Anderson, K., Stokoe, D., Erdjument-Bromage, H., Painter, G. F., Holmes, A. B., Gaffney, P. R., Reese, C. B., McCormick, F., Tempst, P., Coadwell, J. and Hawkins, P. T. (1998) Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science 279, 710-714 https://doi.org/10.1126/science.279.5351.710
  8. Manning, B. D. and Cantley, L. C. (2007) AKT/PKB signaling, navigating downstream. Cell 129, 1261-1274 https://doi.org/10.1016/j.cell.2007.06.009
  9. Kang, H.Y., Shim, D., Kang, S.S., Chang, S.I. and Kim, H.Y. (2006) Protein kinase B inhibits endostatin-induced apoptosis in HUVECs. J. Biochem. Mol. Biol. 39, 97-104 https://doi.org/10.5483/BMBRep.2006.39.1.097
  10. McManus, E. J., Sakamoto, K., Armit, L. J., Ronaldson, L., Shpiro, N., Marquez, R. and Alessi, D. R. (2005) Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO. J. 24, 1571-1583 https://doi.org/10.1038/sj.emboj.7600633
  11. Macaulay, K., Blair, A. S., Hajduch, E., Terashima, T., Baba, O., Sutherland, C. and Hundal, H. S. (2005) Constitutive activation of GSK3 down regulates glycogen synthase abundance and glycogen deposition in rat skeletal muscle cells. J. Biol. Chem. 280, 9509-9518 https://doi.org/10.1074/jbc.M411648200
  12. Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W. S. and Khvorova, A. (2004) Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326-330 https://doi.org/10.1038/nbt936
  13. Kim, J., Kim, H., Lee, Y., Yang, K., Byun, S. and Han, K. (2006) A simple and economical short-oligonucleotidebased approach to shRNA generation. J. Biochem. Mol. Biol. 39, 329-334 https://doi.org/10.5483/BMBRep.2006.39.3.329
  14. Andjelkovic, M., Alessi, D. R., Meier, R., Fernandez, A.,Lamb, N. J., Frech, M., Cron, P., Cohen, P., Lucocq, J. M. and Hemmings, B. A. (1997) Role of translocation in the activation and function of protein kinase B. J. Biol. Chem. 272, 31515-31524 https://doi.org/10.1074/jbc.272.50.31515
  15. Ma, K., Cheung, S.M., Marshall, A.J. and Duronio, V. (2008) PI(3,4,5)P3 and PI(3,4)P2 levels correlate with PKB/akt phosphorylation at Thr308 and Ser473, respectively; PI(3,4) P2 levels determine PKB activity. Cell Signal. 20, 684-694 https://doi.org/10.1016/j.cellsig.2007.12.004
  16. Summers, S. A., Kao, A. W., Kohn, A. D., Backus, G. S., Roth, R. A., Pessin, J. E. and Birnbaum, M. J. (1999) The role of glycogen synthase kinase 3beta in insulin- stimulated glucose metabolism. J. Biol. Chem. 274, 17934-17940 https://doi.org/10.1074/jbc.274.25.17934
  17. Munro, S., Ceulemans, H., Bollen, M., Diplexcito, J. and Cohen, P.T. (2005) A novel glycogen-targeting subunit of protein phosphatase 1 that is regulated by insulin and shows differential tissue distribution in humans and rodents. FEBS. J. 272, 1478-1489 https://doi.org/10.1111/j.1742-4658.2005.04585.x
  18. Ijuin, T., Yu, Y.E., Mizutani, K., Pao, A., Tateya, S., Tamori, Y., Bradley, A. and Takenawa, T. (2008) Increased insulin action in SKIP heterozygous knockout mice. Mol. Cell Biol. 28, 5184-5195 https://doi.org/10.1128/MCB.01990-06
  19. Fukui, K., Wada, T., Kagawa, S., Nagira, K., Ikubo, M.,Ishihara, H., Kobayashi, M. and Sasaoka, T. (2005) Impact of the liver-specific expression of SHIP2 (SH2-containing inositol 5'-phosphatase 2) on insulin signaling and glucose metabolism in mice. Diabetes 54, 1958-1967 https://doi.org/10.2337/diabetes.54.7.1958
  20. Sasaoka, T., Hori, H., Wada, T., Ishiki, M., Haruta, T., Ishihara, H. and Kobayashi, M. (2001) SH2-containing inositol phosphatase 2 negatively regulates insulin-induced glycogen synthesis in L6 myotubes. Diabetologia 44, 1258-1267 https://doi.org/10.1007/s001250100645
  21. Wada, T., Sasaoka, T., Funaki, M., Hori, H., Murakami, S.,Ishiki, M., Haruta, T., Asano, T., Ogawa, W., Ishihara, H. and Kobayashi, M. (2001) Overexpression of SH2- containing inositol phosphatase 2 results in negative regulation of insulin-induced metabolic actions in 3T3-L1 adipocytes via its 5'-phosphatase catalytic activity. Mol. Cell Biol. 21, 1633-1646 https://doi.org/10.1128/MCB.21.5.1633-1646.2001
  22. Sleeman, M. W., Wortley, K. E., Lai, K. M., Gowen, L.C.,Kintner, J., Kline, W. O., Garcia, K., Stitt, T. N., Yancopoulos, G. D., Wiegand, S. J. and Glass, D. J. (2005) Absence of the lipid phosphatase SHIP2 confers resistance to dietary obesity. Nat. Med. 11, 199-205 https://doi.org/10.1038/nm1178
  23. Cantley, L.C. and Neel, B. G. (1999) New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl. Acad. Sci. U.S.A. 96, 4240-4245 https://doi.org/10.1073/pnas.96.8.4240
  24. Tang, X., Powelka, A. M., Soriano, N. A., Czech, M. P. and Guilherme, A. (2005) PTEN but not SHIP2 suppresses insulin signaling through the phosphatidylinositol 3-kinase/Akt pathway in 3T3-L1 adipocytes. J. Biol. Chem. 280, 22523-22529 https://doi.org/10.1074/jbc.M501949200
  25. Wijesekara, N., Konrad, D., Eweida, M., Jefferies, C., Liadis, N., Giacca, A., Crackower, M., Suzuki, A., Mak, T. W., Kahn, C. R., Klip, A. and Woo, M. (2005) Muscle-specific Pten deletion protects against insulin resistance and diabetes. Mol. Cell Biol. 25, 1135-1145 https://doi.org/10.1128/MCB.25.3.1135-1145.2005

Cited by

  1. Characterization of porcine SKIP gene in skeletal muscle development: Polymorphisms, association analysis, expression and regulation of cell growth in C2C12 cells vol.92, pp.4, 2012, https://doi.org/10.1016/j.meatsci.2012.05.016
  2. MyoD control of SKIP expression during pig skeletal muscle development vol.38, pp.1, 2011, https://doi.org/10.1007/s11033-010-0104-4
  3. The inositol Inpp5k 5-phosphatase affects osmoregulation through the vasopressin-aquaporin 2 pathway in the collecting system vol.462, pp.6, 2011, https://doi.org/10.1007/s00424-011-1028-0
  4. Induction of Ca2+ signal mediated apoptosis and alteration of IP3R1 and SERCA1 expression levels by stress hormone in differentiating C2C12 myoblasts vol.166, pp.2, 2010, https://doi.org/10.1016/j.ygcen.2009.08.011
  5. Phosphoinositides: Key modulators of energy metabolism vol.1851, pp.6, 2015, https://doi.org/10.1016/j.bbalip.2014.11.008
  6. Enhancement of paclitaxel-induced breast cancer cell death via the glycogen synthase kinase-3β-mediated B-cell lymphoma 2 regulation vol.49, pp.1, 2016, https://doi.org/10.5483/BMBRep.2016.49.1.102