Lim, Jin-Hyuk;Cha, Hyun-Myoung;Park, Heajin;Kim, Ha Hyung;Kim, Dong-Il
KSBB Journal
/
v.32
no.3
/
pp.193-198
/
2017
Sialylation is important in producing therapeutic proteins such as antibody, cytokine and fusion protein. Thus, enhancement of sialylation is usually performed in CHO cell cultures. ${\alpha}2,6$-Sialyltransferase (ST), which plays a key role in the attachment of ${\alpha}2,6-sialic$ acid, is present in human cells but not in Chinese hamster ovary (CHO) cells. Overexpression of ${\alpha}2,6-ST$ can be used for enhancing the degree of sialylation and achieving human-like glycosylation. In this study, we constructed CHO cells producing human cytotoxic T-lymphocyte antigen4-immunoglobulin (hCTLA4-Ig) as well as ${\alpha}2,6-ST$. Transfected CHO cells were selected using G418 and stable cell line was established. Profiles of viable cell density and hCTLA4-Ig titer in an overexpressed cell line were similar to those of a wild-type cell line. It was confirmed that the total amount of sialic acid was increased and ${\alpha}2,6-sialic$ acid was attached to the terminal residues of N-glycan of hCTLA4-Ig by ESI-LC-MS. Compared to 100% of ${\alpha}2,3-sialic$ acid in wild type cells, 70.9% of total sialylated N-glycans were composed of ${\alpha}2,6-sialic$ acid in transfected cells. In conclusion, overexpression of ${\alpha}2,6-ST$ in CHO cells led to the increase of both the amount of total sialylated N-glycan and the content of ${\alpha}2,6-sialic$ acid, which is more resemble to human-like structure of glycosylation.
Kim, Moo-Woong;Ko, Su-Min;Kim, Jeong-Yoon;Sohn, Jung-Hoon;Park, Eui-Sung;Kang, Hyun-Ah;Rhee, Sang-Ki
Biotechnology and Bioprocess Engineering:BBE
/
v.5
no.4
/
pp.234-241
/
2000
The Saccharomyces cerevisiae PMR1 gene encodes a Ca2+-ATPase localized in the Golgi. We have investigated the effects of PMR1 disruption in S. cerevisiae on the glycosylation and secretion of three heterologous glycoproteins, human ${\alpha}$1-antitrypsin (${\alpha}$1-AT), human antithrombin III (ATHIII), and Aspergillus niger glucose oxidase (GOD). The pmr1 null mutant strain secreted larger amounts of ATHIII and GOD proteins per a unit cell mass than the wild type strain. Despite a lower growth rate of the pmr1 mutant, two-fold higher level of human ATHIII was detected in the culture supernatant from the pmr1 mutant compared to that of the wild-type strain. The pmr1 mutant strain secreted ${\alpha}$1-AT and the GOD proteins mostly as core-glycosylated forms, in contrast to the hyperglycosylated proteins secreted in the wild-type strain. Furthermore, the core-glycosylated forms secreted in the pmr1 mutant migrated slightly faster on SDS-PAGE than those secreted in the mnn9 deletion mutant and the wild type strains. Analysis of the recombinant GOD with anti-${\alpha}$1,3-mannose antibody revealed that GOD secreted in the pmr1 mutant did not have terminal ${\alpha}$1,3-linked mannose unlike those secreted in the mnn9 mutant and the wild type strains. The present results indicate that the pmr1 mutant, with the super-secretion phenotype, is useful as a host system to produce recombinant glycoproteins lacking high-mannose outer chains.
Using two drugs, tunicamycin and brefeldin A, which affect protein processing, we investigated the intracellular processing mechanism of secreted aspartyl proteinase 1 (SAPl) of Candide albicans. Three intracellular forms of SAPI were detected by immunoblotting using menoclonal antibody (MAb) CAPl. Their molecular weights were approximately 40, 41 and 45 kDa, respectively. The 41 kDa protein is a glycoprotein and may be the same as the extracellular form judging by its molecular mass. The 40 kDa protein was the unglycosylated form and its molecular mass coincided with deglycosylated SAPl and the 45 kDa protein was also the unglycosylated form. Neither the 40 and 45 kDa proteins were detected in the culture supernatant of C. albicans. These suggested that the 40 and 45 kDa proteins might be intracellular precursor forms of SAPI. These results show that SAPI is translated as a 45 kDa precusor form in the endoplasmic reticulum and the 45 kDa precursor farm undergoes proteolytic cleavage after translocation into the Golgi apparatus, generating the 40 kDa precursor form. This 40 kDa precursor is converted into a 41 kDa mature form through glycosylation in the Golgi apparatus. The mature form of the 41 kDa protein is sorted into secretary vesicles and finally released into the extracellular space through membrane fusion. When the glycan region of SAPl was digested with N-glycosidase F, both stability and activity of the enzyme decreased. These results indicate that the glycan attached to the enzyme may, at least in parti be related to enzyme stability and activity.
The gene encoding F protein of CBP-1 strain, a heat-stable Newcastle disease virus (NDV) isolated from the diseased pheasants in Korea, was characterized by reverse transcription-polymerase chain reaction (RT-PCR), nucleotide and amino acid sequences. Virus RNA was prepared from the chorioallatoic fluid infected with NDV CBP-1 virus and cDNA was amplified by RT-PCR, cloned and sequenced to analyze. The PCR was sensitive as to detect the virus titer above $2^5$ hemagglutination unit. 1.7kb (1,707bp) size of the cDNA was amplified and cloned into BamHI site of pVL1393 Baculo transfer vector. The nucleotide sequences for F protein were determined by dye terminator cyclic sequencing using four pairs of primers, and 553 amino acid sequences were predicted. In comparison of the nucleotide sequence of F gene of CBP-1 with those of other NDV strains, the homology revealed 88.8%, 98.5% and 98.7% with Kyojungwon (KJW), Texas GB and Beaudette C strains, respectively. As the deduced 553 amino acid sequences of F protein of CBP-1 were compared with those of other NDV strains, the homology appeared 89.9%, 98.7% and 98.9% with KJW, Texas GB and Beaudette C strains, respectively. The putative protease cleavage site (112-116) was R-R-Q-K-R, indicating that CBP-1 strain is velogenic type. The amino acid sequences include 6 sites of N-asparagine-linked glycosylation and 13 cysteine residues. These data indicate that the genotype of CBP-1 strain is more closely associated with the strains of Texas GB and Beaudette C than KJW strain.
Using two drugs, tunicamycin and brefeldin A, which affect protein processing, we investigated the intracellular processing mechanism of secreted aspartyl proteinase 1 (SAPl) of Candide albicans. Three intracellular forms of SAPI were detected by immunoblotting using menoclonal antibody (MAb) CAPl. Their molecular weights were approximately 40, 41 and 45 kDa, respectively. The 41 kDa protein is a glycoprotein and may be the same as the extracellular form judging by its molecular mass. The 40 kDa protein was the unglycosylated form and its molecular mass coincided with deglycosylated SAPl and the 45 kDa protein was also the unglycosylated form. Neither the 40 and 45 kDa proteins were detected in the culture supernatant of C. albicans. These suggested that the 40 and 45 kDa proteins might be intracellular precursor forms of SAPI. These results show that SAPI is translated as a 45 kDa precusor form in the endoplasmic reticulum and the 45 kDa precursor farm undergoes proteolytic cleavage after translocation into the Golgi apparatus, generating the 40 kDa precursor form. This 40 kDa precursor is converted into a 41 kDa mature form through glycosylation in the Golgi apparatus. The mature form of the 41 kDa protein is sorted into secretary vesicles and finally released into the extracellular space through membrane fusion. When the glycan region of SAPl was digested with N-glycosidase F, both stability and activity of the enzyme decreased. These results indicate that the glycan attached to the enzyme may, at least in parti be related to enzyme stability and activity.
Purpose : Podocytes are critical in maintaining the filtration barrier of the glomerulus and are dependent on the integrity of slit diaphragm(SD) proteins including nephrin, p-cadherin, and others. Diabetic proteinuric condition demonstrates defects in SD molecules as well as ultrastructural changes in podocytes. We examined the molecular basis for this alteration of SD molecules especially on P-cadherin as a candidate regulating the modulation of pathogenic changes in the barrier to protein filtration. Methods : To investigate whether high glucose and AGE induce changes in SD, we cultured rat GEpC under normal(5 mM) or high glucose(30 mM) and AGE- or BSA-added conditions and measured the change of P-cadherin expression by Western blotting and RT-PCR. Results : We found that administration of high glucose decreased the P-cadherin production significantly in the presence or absence of AGE by Western blotting. In RT-PCR high glucose with or without AGE also significantly decreased the expression of P-cadherin mRNA compared to those of controls. Such changes were not seen in the osmotic control. Conclusion : We suggest that high glucose with or without AGE suppresses the Production of P-cadherin at the transcriptional level and that these changes nay explain the functional changes of SD in diabetic conditions. (J Korean Soc Pediatr Nephrol 2005;9:119-127)
High value-added therapeutic proteins have been leading the biologics industry and occupied major portion of the market. More than 60% of the currently available protein therapeutics are glycoproteins attached with glycans which play crucial roles for the protein folding, therapeutic efficacy, in vivo half-life and immunogenecity. This review introduces the process of glycosylation and the impacts of glycans in the aspects of therapeutics. The important glycan structures in therapeutic performances were also summarized focusing on three representative categories of glycoproteins, cytokines, therapeutic antibody and enzyme. Currently, mammalian expression systems such as Chinese hamster ovary cells are preferred for the production of therapeutic glycoproteins due to their ability to synthesize glycans having similar structures with human type glycans. However, recent advances of plant glycoengineering to overcome the limitation originating from different glycan structures will soon allow to develop more efficient and economic plant-based production systems for therapeutic glycoproteins.
Periodate-oxidized soluble starch and maltohexaose, maltotetraose, maltose, and glyceraldehyde reacted with sweet potato ${\beta}-amylase$, wheat ${\beta}-amylase$, aldolase, bovine serum albumin, catalase, carboxypeptidase, ferritin and pronase. Electrophoretical mobility of modified proteins was different from that of native proteins, and modified proteins were stained with periodic acid-Schiff while native proteins did not stain. This results means that oxidized sugars attached on proteins. This bond is based on the Schiffs base between CHO group of oxidized sugar and ${\varepsilon}-NH_2$ group of lysine of protein. There is no changed UV absorption spectrum of sweet potato ${\beta}-amylase$ modified with oxidized soluble starch, in comparison with native enzyme.
There exist two interesting phenomena in making seafood products from surimi. When salted surimi is kept at a constant low temperature $(4\~40^{\circ}C)$, its rheological properties change from sol to gel, which is called 'setting'. Seafood processors can exploit changes that occur during setting in preparation of surimibased products, because heating at high temperatures, after the pre-heating during the setting process, enhances the gel-strength of salted surimi. Contrarily, when salted surimi or low-temperature set gel is heated at moderate temperatures $(50\~70^{\circ}C)$, a deterioration of gel is observed. The phenomenon is termed 'modori'. In the modori temperature range, heat-stable cysteine proteinases such as cathepsin B, H, Land L-Iike hydrolyze the myosins responsible for gel-formation, resulting in gel weakening modori. This article reviews molecular events occurring during gel setting that improve the quality of surimi-based products, and inhibition of modori by applying proteinase inhibitors. Application of recombinant protein technology to surimi-based products is introduced and its prospects for practical use are discussed.
The DM9 domain is a protein unit of 60-75 amino acids that has been first detected in the fruit fly Drosophila as a repeated motif of unknown function. Recent research on proteins carrying DM9 domains in the mosquito Anopheles gambiae and the oyster Crassostrea gigas indicated an association with the uptake of microbial organisms. Likewise, in the trematode Fasciola gigantica DM9-1 showed intracellular relocalization following microbial, heat and drug stress. In the present research, we show that FgDM9-1 is a lectin with a novel mannose-binding site that has been recently described for the protein CGL1 of Crassostrea gigas. This property allowed FgDM9-1 to agglutinate gram-positive and -negative bacteria with appropriate cell surface glycosylation patterns. Furthermore, FgDM9-1 caused hemagglutination across all ABO blood group phenotypes. It is speculated that the parenchymal located FgDM9-1 has a role in cellular processes that involve the transport of mannose-carrying molecules in the parenchymal cells of the parasite.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.