Effect of a PMR1 Disruption on the Processing of Heterologous Glycoproteins Secreted in the Yeast Saccharomyces cerevisiae

  • Kim, Moo-Woong (Korea Research Institute of Bioscience and Biotechnology, PO Box 115, Yusong, Taejon 305-600) ;
  • Ko, Su-Min (Korea Research Institute of Bioscience and Biotechnology, PO Box 115, Yusong, Taejon 305-600) ;
  • Kim, Jeong-Yoon (Department of Microbiology, Chungnam National University, Taejon 305-764) ;
  • Sohn, Jung-Hoon (Korea Research Institute of Bioscience and Biotechnology, PO Box 115, Yusong, Taejon 305-600) ;
  • Park, Eui-Sung (Korea Research Institute of Bioscience and Biotechnology, PO Box 115, Yusong, Taejon 305-600) ;
  • Kang, Hyun-Ah (Korea Research Institute of Bioscience and Biotechnology, PO Box 115, Yusong, Taejon 305-600) ;
  • Rhee, Sang-Ki (Korea Research Institute of Bioscience and Biotechnology, PO Box 115, Yusong, Taejon 305-600)
  • Published : 2000.07.01

Abstract

The Saccharomyces cerevisiae PMR1 gene encodes a Ca2+-ATPase localized in the Golgi. We have investigated the effects of PMR1 disruption in S. cerevisiae on the glycosylation and secretion of three heterologous glycoproteins, human ${\alpha}$1-antitrypsin (${\alpha}$1-AT), human antithrombin III (ATHIII), and Aspergillus niger glucose oxidase (GOD). The pmr1 null mutant strain secreted larger amounts of ATHIII and GOD proteins per a unit cell mass than the wild type strain. Despite a lower growth rate of the pmr1 mutant, two-fold higher level of human ATHIII was detected in the culture supernatant from the pmr1 mutant compared to that of the wild-type strain. The pmr1 mutant strain secreted ${\alpha}$1-AT and the GOD proteins mostly as core-glycosylated forms, in contrast to the hyperglycosylated proteins secreted in the wild-type strain. Furthermore, the core-glycosylated forms secreted in the pmr1 mutant migrated slightly faster on SDS-PAGE than those secreted in the mnn9 deletion mutant and the wild type strains. Analysis of the recombinant GOD with anti-${\alpha}$1,3-mannose antibody revealed that GOD secreted in the pmr1 mutant did not have terminal ${\alpha}$1,3-linked mannose unlike those secreted in the mnn9 mutant and the wild type strains. The present results indicate that the pmr1 mutant, with the super-secretion phenotype, is useful as a host system to produce recombinant glycoproteins lacking high-mannose outer chains.

Keywords

References

  1. Yeast v.8 For-eign gene expression in yeast: a review Romanos, M. A.;C. A. Scorer;J. J. Clare
  2. Yeast genetic engineering Yeast mutants with increased secre-tion efficiency Moir, D. T.;P. J. Barr(eds.);A. J. Brake(eds.);P. Valenzuela(eds.)
  3. Yeast genetic engineering Yeast mutants with increased secre-tion efficiency Moir, D. T.;P. J. Barr(eds.);A. J. Brake(eds.);P. Valenzuela(eds.)
  4. Science v.229 Het-erologous protein secretion from yeast Smith, R. A.;M. J. Duncan;D. T. Moir
  5. Cell v.58 The yeast secretory pathway is perturbed by mutations in PMR1, a member of a Ca[sup 2+] ATPase fam-ily Rudolph, H. K.;A. Antebi;G. R. Fink;C. M. Buckley;T. E. Dorman;J. LeVitre;L. S. Davidow;J. I. Mao;D. T. Moir
  6. Mol. Biol. Cell. v.3 The yeast Ca[sup (2+)]-ATPase homologue, PMR1, is required for normal Golgi function and localizes in a novel Golgi-like distribution Antebi, A.;G. R. Fink
  7. J. Biol. Chem. v.272 PMR1, a Ca[sup 2+]-ATPase in yeast Golgi, has properties distinct from sarco/endoplasmic reticulum and plasma membrane cal-cium pumps Sorin, A.;G. Rosas;R. Rao
  8. Mol. Biol. Cell. v.9 The medial-Golgi ion pump Pmr1 supplies the yeast secretory pathway with Ca[sup 2+] and Mn[sup 2+] required for glycosylation, sorting, and endoplasmic reticulum-associated protein degrada-tion Durr, G.;J. Strayle;R. Plemper;S. Elbs;S. K. Klee;P. Catty;D. H. Wolf;H. K. Rudolph
  9. Biotechnol. Bioeng. v.37 Optimization of pro-urokinase secretion from recombinant Saccharomyces cerevisiae Turner, B. G.;G. C. Avgerinos;L. M. Melnick;D. T. Moir
  10. Appl. Microbiol. Biotechnol. v.46 Overexpression of binding protein and distruption of the PMR1 gene synergistically stimulate secretion of bovine prochymosin but not plant thaumatin in yeast Harmsen, M. M.;M. I. Bruyne;H. A. Raue;J. Maat
  11. Protein. Eng. v.9 A novel yeast expression/secretion system for the recombinant plant thiol endoprotease propapain Ramjee, M. K.;J. R. Petithory;J. McElver;S. C. Weber;J. F. Kirsch
  12. Gene v.125 Effect of a pmr1 disruption and different signal sequences on the intracel-lular processing and secretion of Cyamopsis tetra-gonoloba α-galactosidase by Saccharomyces cerevisiae Harmsen, M. M.;A. C. Langedijk;E. van Tuinen;R. H. Geerse;H. A. Raue;J. Matt
  13. Glycobiology v.5 Mannosyltrans-ferase activities in membranes from various yeast strains Verostek, M. F.;R. B. Trimble
  14. Yeast v.14 Glycosylation of human α₁-antitrypsin in Saccharomyces cerevisiae and methylotro-phic yeasts Kang, H. A.;J. H. Sohn;E. S. Choi;B. H. Chung;M. H. Yu;S. K. Rhee
  15. Yeast v.14 Cloning and characterization of the Hansenula polymorpha homo-logue of the Saccharomyces cerevisiae PMR1 gene Kang, H. A.;J. Y. Kim;S. M. Ko;C. S. Park;D. D. Ryu;J. H. Sohn;E. S. Choi;S. K. Rhee
  16. Proc. Natl. Acad. Sci. USA v.91 Cloning and analysis of the Saccharomyces cerevisae MNN9 and creted proteins Yip, C. L.;S. K. Welch;F. Klebl;T. Gilbert;P. Seidel;F. J. Grant;P. J. O'Hara;V. L. Mackay
  17. Yeast v.2 Yeast/E. coli shuttle vectors with multiple unique restriction sites Hill, J. E.;A. M. Myers;T. J. Koerner;A. Tzagoloff
  18. Nucleic. Acids. Res. v.19 DMSO-enhanced whole cell yeast transformation Hill, J. K.;A. Donald;D. E. Griffiths;G. Donald
  19. Methods in yeast genetics Sherman, F.;J. B. Hicks;G. R. Fink
  20. J. Biotechnol. v.48 High-level secretion of human α₁-anti-trypsin from Saccharomyces cerevisiae using inulinase signal sequence Kang, H. A.;S. W. Nam;K. S. Kwon;B. H. Chung;M. H. Yu
  21. Curr. Genet. v.17 Cloning, characterization, and expression of two α-amylase genes from Aspergillus niger var. awamori Korman, D. R.;F. T. Bayliss;C. C. Barnett;C. L. Carmona;K. H. Kadama;T. J. Royer;S. A. Thompson;M. Ward;L. J. Wilson;R. M. Berka
  22. J. Biol. Chem. v.272 Folding and stability of the Z and S[sub iiyama] genetic variants of human α₁-antitrypsin Kang, H. A.;K. N. Lee;M. H. Yu
  23. Cell v.39 The major promoter element of rRna transcription in yeast lies 2 kb up-stream Elion, E. A.;J. R. Warner
  24. FEBS Lett. v.135 Human α₁-anti-trypsin: carbohydrate attachment and sequence homol-ogy Carrell, R. W.;J. O. Jeppsson;L. Vaughan;S. O. Brennan;M. C. Owen;D. R. Boswell
  25. J. Biol. Chem. v.255 Struc-tural studies on the carbohydrate portion of human anti-thrombin III Franzen, L. E.;S. Svensson;O. Larm
  26. J. Biol. Chem. v.265 Glucose oxidase from Aspergillus niger. Cloning, gene sequence, secretion from Saccharomyces cerevisiae and kinetic analysis of a yeast-derived enzyme Frederick, K. R.;J. Tung;R. S. Emerick;F. R. Masiarz;S. H. Chamberlain;A. Vasavada;S. Rosenberg;S. Chak-raborty;L. M. Schopfer;L. M. Schopter;V. Massey
  27. J. Biol. Chem. v.255 A disulfide bond in antithrombin is required for heparin-accelerated thrombin inactivation Longas, M. O.;W. S. Ferguson;T. H. Finlay
  28. Structure v.2 Biological implications of a 3 A structure of dimeric antithrombin Carrell, R. W.;P. E. Stein;G. Fermi;M. R. Wardell
  29. Nat. Biotechnol. v.14 Getting the glycosylation right: implications for the biotechnol-ogy industry Jenkins, N.;R. B. Parekh;D. C. James
  30. Yeast genetic engineer-ing Glycosylation of heterologous proteins in Saccharomyces cerevisiae Moir, D. T.;P. J. Barr(eds.);A. J. Brake(eds.);P. Valenzuela(eds.)
  31. J. Biol. Chem. v.268 Structure of the N-linked oligo-saccharides that show the complete loss of alpha-1,6-polymannose outer chain from och1,och1 mnn1,and och1 mnn1 alg3 mutants of Saccharomyces cerevisiae Nakanishi-Shindo,Y.;K. I. Nakayama;A. Tanaka;T. Toda;Y. Jigami