• 제목/요약/키워드: Protein candidate

검색결과 697건 처리시간 0.026초

A NELL-1 Binding Protein: Vimentin

  • Chae, Hwa-Sung;Kim, Young-Ho
    • Journal of Korean Dental Science
    • /
    • 제4권1호
    • /
    • pp.6-13
    • /
    • 2011
  • Purpose: Craniosynostosis (CS), one of the most common congenital craniofacial deformities, is the premature closure of cranial sutures. NELL-1 is a novel molecule overexpressed during premature cranial suture closure in human CS. From a functional perspective, NELL-1 has been reported to accelerate chondrocyte maturation and modulate calvarial osteoblast differentiation and apoptosis pathways. The mechanism through which NELL-1 induces these phenomena, however, remains unclear. The purpose of this study is to identify the NELL-1 binding protein(s) through which the biologic mechanism of NELL-1 can be further investigated. Materials and Methods: Far-Western and Immunoprecipitation (IP) assays were performed, independently and in sequence, followed by mass spectrometry to identify the NELL-1 binding proteins. Reverse IP was used to verify and confirm candidate binding protein. Results: The only confirmative protein from current experimentation was vimentin. Vimentin is the major structural component of the intermediate filaments. Conclusion: The present study identified and confirmed vimentin as a NELL-1 binding protein, which opened up a new window to mechanistically facilitate studies on this CS-associated molecule.

A New-Generation Fluorescent-Based Metal Sensor - iLOV Protein

  • Ravikumar, Yuvaraj;Nadarajan, Saravanan Prabhu;Lee, Chong-Soon;Rhee, Jin-Kyu;Yun, Hyungdon
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권4호
    • /
    • pp.503-510
    • /
    • 2015
  • The iLOV protein belongs to a family of blue-light photoreceptor proteins containing a light-oxygen-voltage sensing domain with a noncovalently bound flavin mononucleotide (FMN) as its chromophore. Owing to advantages such as its small size, oxygen-independent nature, and pH stability, iLOV is an ideal candidate over other reporter fluorescent proteins such as GFP and DsRed. Here, for the first time, we describe the feasibility of applying LOV domain-based fluorescent iLOV as a metal sensor by measuring the fluorescence quenching of a protein with respect to the concentration of metal ions. In the present study, we demonstrated the inherent copper sensing property of the iLOV protein and identified the possible amino acids responsible for metal binding. The fluorescence quenching upon exposure to Cu2+ was highly sensitive and exhibited reversibility upon the addition of the metal chelator EDTA. The copper binding constant was found to be 4.72 ± 0.84 µM. In addition, Cu2+-bound iLOV showed high fluorescence quenching at near physiological pH. Further computational analysis yielded a better insight into understanding the possible amino acids responsible for Cu2+ binding with the iLOV protein.

Novel potential drugs for the treatment of primary open-angle glaucoma using protein-protein interaction network analysis

  • Parisima Ghaffarian Zavarzadeh;Zahra Abedi
    • Genomics & Informatics
    • /
    • 제21권1호
    • /
    • pp.6.1-6.8
    • /
    • 2023
  • Glaucoma is the second leading cause of irreversible blindness, and primary open-angle glaucoma (POAG) is the most common type. Due to inadequate diagnosis, treatment is often not administered until symptoms occur. Hence, approaches enabling earlier prediction or diagnosis of POAG are necessary. We aimed to identify novel drugs for glaucoma through bioinformatics and network analysis. Data from 36 samples, obtained from the trabecular meshwork of healthy individuals and patients with POAG, were acquired from a dataset. Next, differentially expressed genes (DEGs) were identified to construct a protein-protein interaction (PPI) network. In both stages, the genes were enriched by studying the critical biological processes and pathways related to POAG. Finally, a drug-gene network was constructed, and novel drugs for POAG treatment were proposed. Genes with p < 0.01 and |log fold change| > 0.3 (1,350 genes) were considered DEGs and utilized to construct a PPI network. Enrichment analysis yielded several key pathways that were upregulated or downregulated. For example, extracellular matrix organization, the immune system, neutrophil degranulation, and cytokine signaling were upregulated among immune pathways, while signal transduction, the immune system, extracellular matrix organization, and receptor tyrosine kinase signaling were downregulated. Finally, novel drugs including metformin hydrochloride, ixazomib citrate, and cisplatin warrant further analysis of their potential roles in POAG treatment. The candidate drugs identified in this computational analysis require in vitro and in vivo validation to confirm their effectiveness in POAG treatment. This may pave the way for understanding life-threatening disorders such as cancer.

Genetic Variations in Six Candidate Genes for Insulin Resistance in Korean Essential Hypertensives

  • Bae, Joon-Seol;Kang, Byung-Yong;Kim, Ki-Tae;Shin, Jung-Hee;Lee, Chung-Choo
    • Animal cells and systems
    • /
    • 제5권4호
    • /
    • pp.341-346
    • /
    • 2001
  • Hypertension is a complex disease with strong genetic influences. Essential hypertension has been shown to be associated with insulin resistance. To clarify the genetic basis of insulin resistance in Hypertension, case-control association studies were performed to examine candidate genes for insulin resistance in hypertension. Polymorphisms investigated were the BstO I polymorphism of the $\beta$3-adrenergic receptor (ADRB3) gene, the Xba I Polymorphism of the glycogen synthase (GSY) gene, the Dde I polymorphism of the protein phosphatase 1 G subuit (PP1G) gene, the BstE II polymorphism of the glucagon receptor (GCG-R) gene, the Pst 1 polymorphism of the insulin (INS) gene and the Acc I polymorphism of the glucokinase (GCK) gene. No significant differences were observed in the distribution of alleles and genotypes of the ADRB3, GSY PP1G, GCG-R, INS, and GCK genes between hypertensive and normotensive groups. Although the frequencies in each of these polymorphisms were not significantly different between essential hypertensive and normotensive individuals, our results may provide additional information for linkage analysis and associative studies of disorders in carbohydrate metabolism or in cardiovascular disease.

  • PDF

Identification of the Gene Responsible for Chicken Muscular Dystrophy

  • Matsumoto, Hirokazu;Sasazaki, Shinji;Mannen, Hideyuki
    • 한국가금학회지
    • /
    • 제38권2호
    • /
    • pp.145-154
    • /
    • 2011
  • By a series of positional cloning, we successfully narrowed down the AM candidate region to approximately 1.2 Mbp on GGA2q including 7 functional genes. Subsequently, we identified WWP1 gene as the most likely AM candidate by sequence comparison. The amino acid sequence around the candidate mutation was highly conserved among tetrapods, suggesting that WWP1 is the causative gene of chicken muscular dystrophy. Transfection of mutated WWP1 gene into $C_2C_{12}$ myoblasts disrupted muscle differentiation process. The abnormal muscle differentiation is a characteristic of chicken muscular dystrophy, so we could demonstrate a part of phenotype of the disease. Furthermore, western blotting revealed that accumulation of caveolin-3 protein is limited in damaged muscle of muscular dystrophic chicken, suggesting caveolin-3 may be associated with the pathological change of the disease. We could conclude that WWP1 gene is the responsible one for chicken muscular dystrophy from these results, but the mechanism leading the onset should be clarified in the future. The information will contribute to the study of chicken muscular dystrophy and the corresponding human dystrophies.

Outer Membrane Protein H for Protective Immunity Against Pasteurella multocida

  • Lee, Jeong-Min;Kim, Young-Bong;Kwon, Moo-Sik
    • Journal of Microbiology
    • /
    • 제45권2호
    • /
    • pp.179-184
    • /
    • 2007
  • Pasteurella multocida, a Gram-negative facultative anaerobic bacterium, is a causative animal pathogen in porcine atrophic rhinitis and avian fowl cholera. For the development of recombinant subunit vaccine against P. multocida, we cloned and analyzed the gene for outer membrane protein H (ompH) from a native strain of Pasteurella multocida in Korea. The OmpH had significant similarity in both primary and secondary structure with those of other serotypes. The full-length, and three short fragments of ompH were expressed in E. coli and the recombinant OmpH proteins were purified, respectively. The recombinant OmpH proteins were antigenic and detectable with antisera produced by either immunization of commercial vaccine for respiratory disease or formalin-killed cell. Antibodies raised against the full-length OmpH provided strong protection against P. multocida, however, three short fragments of recombinant OmpHs, respectively, showed slightly lower protection in mice challenge. The recombinant OmpH might be a useful vaccine candidate antigen for P. multocida.

Porphyromonas gingivalis 열충격 단백으로 면역한 백서에서의 치조골 파괴의 감소 (Reduced alveolar bone loss in rats immunized with Porphyromonas gingivalis heat shock protein)

  • 이니나;이주연;최점일
    • Journal of Periodontal and Implant Science
    • /
    • 제33권4호
    • /
    • pp.555-562
    • /
    • 2003
  • The present study has been performed to evaluate Porphyromonas gingivalis (P.gingivalis) heat shock protein(HSP)60 as a candidate vaccine to inhibit multiple bacteria-induced alveolar bone loss. Rats were immunized with P.gingivalis HSP60 and experimental alveolar bone loss was induced by infection with multiple periodonto -pathogenic bacteria. Post-immune rat anti-P.gingivalis HSP IgG levels were significantly elevated and have demonstrated highly significant inverse relationship with the amount of alveolar bone loss induced by multiple bacteria. Results from PCR detection of subgingival bacterial plaque indicated that the vaccine successfully eradicated the multiple pathogenic species. We concluded that P.gingivalis HSP60 could potentially be developed as a vaccine to inhibit periodontal disease induced by multiple pathogenic bacteria.

Proteomic Analysis of Circadian Clock Mutant Mice

  • Lee Joon-Woo;Kim Han-Gyu;Bae Kiho
    • 대한의생명과학회지
    • /
    • 제11권4호
    • /
    • pp.493-501
    • /
    • 2005
  • Circadian rhythms, time on a scale of about 24 hours, are present in a number of organisms including animals, plants, and bacteria. The control of the biochemical, physiological and behavioral processes is regulated by endogenous clocks in the suprachiasmatic nucleus (SCN). At the core of this timing mechanism is molecular machinery that are present both in the brain and in the peripheral tissues throughout the body, and even in a single cultured cell. In this study, we performed two-dimensional gel electrophoresis to figure out any correlation between protein expression patterns and the requirement of two canonical clock proteins, either mPER1 or mPER2, by comparing global protein expression profiles in livers from wildtype or mPer1/mPer2 double mutant mice. We could identify several differentially expressed protein candidates with respect to time and genotypes. Further analysis of these candidate proteins in detail in vivo will lead us to the better understanding of how circadian clock functions in mammals.

  • PDF

Modulation of Rit Activation by the Alpha Subunit of Go

  • ;길성호
    • 대한의생명과학회지
    • /
    • 제15권4호
    • /
    • pp.327-333
    • /
    • 2009
  • Heterotrimeric GTP binding proteins, G-proteins, mediate signal transduction generated by neurotransmitters and hormones. Among G-proteins, Go proteins are the most abundant in brain and classified as a member of Gi family. Ras-like protein in all tissues (Rit), one of the small GTPases, is a member of a Ras superfamily and identified as an important regulator of neuronal differentiation and cell transformation. Recently, we have reported that Rit functioned as a candidate downstream effector for alpha subunit of Go proteins ($Go{\alpha}$) and regulated neurite outgrowth triggered by $Go{\alpha}$ activation. In this study, we showed that the GTPase domain of $Go{\alpha}$ contributed to the direct interaction with Rit. We also demonstrated that $Go{\alpha}$ could lead to an increase of Rit activity suggesting that Rit play a role as a downstream effector of $Go{\alpha}$.

  • PDF

Proposal of Dual Inhibitor Targeting ATPase Domains of Topoisomerase II and Heat Shock Protein 90

  • Jun, Kyu-Yeon;Kwon, Youngjoo
    • Biomolecules & Therapeutics
    • /
    • 제24권5호
    • /
    • pp.453-468
    • /
    • 2016
  • There is a conserved ATPase domain in topoisomerase II (topo II) and heat shock protein 90 (Hsp90) which belong to the GHKL (gyrase, Hsp90, histidine kinase, and MutL) family. The inhibitors that target each of topo II and Hsp90 are intensively studied as anti-cancer drugs since they play very important roles in cell proliferation and survival. Therefore the development of dual targeting anti-cancer drugs for topo II and Hsp90 is suggested to be a promising area. The topo II and Hsp90 inhibitors, known to bind to their ATP binding site, were searched. All the inhibitors investigated were docked to both topo II and Hsp90. Four candidate compounds as possible dual inhibitors were selected by analyzing the molecular docking study. The pharmacophore model of dual inhibitors for topo II and Hsp90 were generated and the design of novel dual inhibitor was proposed.