DOI QR코드

DOI QR Code

Proposal of Dual Inhibitor Targeting ATPase Domains of Topoisomerase II and Heat Shock Protein 90

  • Jun, Kyu-Yeon (College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University) ;
  • Kwon, Youngjoo (College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University)
  • Received : 2016.08.02
  • Accepted : 2016.08.16
  • Published : 2016.09.01

Abstract

There is a conserved ATPase domain in topoisomerase II (topo II) and heat shock protein 90 (Hsp90) which belong to the GHKL (gyrase, Hsp90, histidine kinase, and MutL) family. The inhibitors that target each of topo II and Hsp90 are intensively studied as anti-cancer drugs since they play very important roles in cell proliferation and survival. Therefore the development of dual targeting anti-cancer drugs for topo II and Hsp90 is suggested to be a promising area. The topo II and Hsp90 inhibitors, known to bind to their ATP binding site, were searched. All the inhibitors investigated were docked to both topo II and Hsp90. Four candidate compounds as possible dual inhibitors were selected by analyzing the molecular docking study. The pharmacophore model of dual inhibitors for topo II and Hsp90 were generated and the design of novel dual inhibitor was proposed.

Keywords

References

  1. Agatsuma, T., Ogawa, H., Akasaka, K., Asai, A., Yamashita, Y., Mizukami, T., Akinaga, S. and Saitoh, Y. (2002) Halohydrin and oxime derivatives of radicicol: Synthesis and antitumor activities. Bioorg. Med. Chem. 10, 3445-3454. https://doi.org/10.1016/S0968-0896(02)00260-2
  2. Barker, C. R., Hamlett, J., Pennington, S. R., Burrows, F., Lundgren, K., Lough, R., Watson, A. J. and Jenkins, J. R. (2006) The topoisomerase II-Hsp90 complex: A new chemotherapeutic target? Int. J. Cancer 118, 2685-2693. https://doi.org/10.1002/ijc.21717
  3. Basarab, G. S., Kern, G. H., McNulty, J., Mueller, J. P., Lawrence, K., Vishwanathan, K., Alm, R. A., Barvian, K., Doig, P., Galullo, V., Gardner, H., Gowravaram, M., Huband, M., Kimzey, A., Morningstar, M., Kutschke, A., Lahiri, S. D., Perros, M., Singh, R., Schuck, V. J., Tommasi, R., Walkup, G. and Newman, J. V. (2015) Responding to the challenge of untreatable gonorrhea: ETX0914, a first-inclass agent with a distinct mechanism-of-action against bacterial Type II topoisomerases. Sci. Rep. 5, 11827. https://doi.org/10.1038/srep11827
  4. Baviskar, A. T., Madaan, C., Preet, R., Mohapatra, P., Jain, V., Agarwal, A., Guchhait, S. K., Kundu, C. N., Banerjee, U. C. and Bharatam, P. V. (2011) N-fused imidazoles as novel anticancer agents that inhibit catalytic activity of topoisomerase $II{\alpha}$ and induce apoptosis in G1/S phase. J. Med. Chem. 54, 5013-5030. https://doi.org/10.1021/jm200235u
  5. Brough, P. A., Aherne, W., Barril, X., Borgognoni, J., Boxall, K., Cansfield, J. E., Cheung, K. M., Collins, I., Davies, N. G., Drysdale, M. J., Dymock, B., Eccles, S. A., Finch, H., Fink, A., Hayes, A., Howes, R., Hubbard, R. E., James, K., Jordan, A. M., Lockie, A., Martins, V., Massey, A., Matthews, T. P., McDonald, E., Northfield, C. J., Pearl, L. H., Prodromou, C., Ray, S., Raynaud, F. I., Roughley, S. D., Sharp, S. Y., Surgenor, A., Walmsley, D. L., Webb, P., Wood, M., Workman, P. and Wright, L. (2008) 4,5-diarylisoxazole Hsp90 chaperone inhibitors: Potential therapeutic agents for the treatment of cancer. J. Med. Chem. 51, 196-218. https://doi.org/10.1021/jm701018h
  6. Chene, P. (2002) ATPases as drug targets: Learning from their structure. Nat. Rev. Drug Discov. 1, 665-673. https://doi.org/10.1038/nrd894
  7. Chene, P., Rudloff, J., Schoepfer, J., Furet, P., Meier, P., Qian, Z., Schlaeppi, J. M., Schmitz, R. and Radimerski, T. (2009) Catalytic inhibition of topoisomerase II by a novel rationally designed ATPcompetitive purine analogue. BMC Chem. Biol. 9, 1. https://doi.org/10.1186/1472-6769-9-1
  8. Chiosis, G., Timaul, M. N., Lucas, B., Munster, P. N., Zheng, F. F., Sepp-Lorenzino, L. and Rosen, N. (2001) A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem. Biol. 8, 289-299. https://doi.org/10.1016/S1074-5521(01)00015-1
  9. Dutta Gupta, S., Snigdha, D., Mazaira, G. I., Galigniana, M. D., Subrahmanyam, C. V., Gowrishankar, N. L. and Raghavendra, N. M. (2014) Molecular docking study, synthesis and biological evaluation of schiff bases as Hsp90 inhibitors. Biomed. Pharmacother. 68, 369-376. https://doi.org/10.1016/j.biopha.2014.01.003
  10. Dutta, R. and Inouye, M. (2000) GHKL, an emergent ATPase/kinase superfamily. Trends Biochem. Sci. 25, 24-28. https://doi.org/10.1016/S0968-0004(99)01503-0
  11. Furet, P., Schoepfer, J., Radimerski, T. and Chene, P. (2009) Discovery of a new class of catalytic topoisomerase II inhibitors targeting the atp-binding site by structure based design. Part I. Bioorg. Med. Chem. Lett. 19, 4014-4017. https://doi.org/10.1016/j.bmcl.2009.06.034
  12. Gui, M., Shi, D. K., Huang, M., Zhao, Y., Sun, Q. M., Zhang, J., Chen, Q., Feng, J. M., Liu, C. H., Li, M., Li, Y. X., Geng, M. and Ding, J. (2011) D11, a novel glycosylated diphyllin derivative, exhibits potent anticancer activity by targeting topoisomerase $II{\alpha}$. Invest. New Drugs 29, 800-810. https://doi.org/10.1007/s10637-010-9425-3
  13. Hall, T. A. (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/nt. Nucl. Acids Symp. Ser. 41, 95-98.
  14. Hu, C. X., Zuo, Z. L., Xiong, B., Ma, J. G., Geng, M. Y., Lin, L. P., Jiang, H. L. and Ding, J. (2006) Salvicine functions as novel topoisomerase II poison by binding to ATP pocket. Mol. Pharmacol. 70, 1593-1601. https://doi.org/10.1124/mol.106.027714
  15. Huang, H., Chen, Q., Ku, X., Meng, L., Lin, L., Wang, X., Zhu, C., Wang, Y., Chen, Z., Li, M., Jiang, H., Chen, K., Ding, J. and Liu, H. (2010) A series of alpha-heterocyclic carboxaldehyde thiosemicarbazones inhibit topoisomerase iialpha catalytic activity. J. Med. Chem. 53, 3048-3064. https://doi.org/10.1021/jm9014394
  16. Ikuina, Y., Amishiro, N., Miyata, M., Narumi, H., Ogawa, H., Akiyama, T., Shiotsu, Y., Akinaga, S. and Murakata, C. (2003) Synthesis and antitumor activity of novel o-carbamoylmethyloxime derivatives of radicicol. J. Med. Chem. 46, 2534-2541. https://doi.org/10.1021/jm030110r
  17. Jain, A. N. (2003) Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J. Med. Chem. 46, 499-511. https://doi.org/10.1021/jm020406h
  18. Jensen, L. H., Liang, H., Shoemaker, R., Grauslund, M., Sehested, M. and Hasinoff, B. B. (2006) A three-dimensional quantitative structure-activity relationship study of the inhibition of the ATPase activity and the strand passing catalytic activity of topoisomerase IIalpha by substituted purine analogs. Mol. Pharmacol. 70, 1503-1513. https://doi.org/10.1124/mol.106.026856
  19. Jensen, L. H., Thougaard, A. V., Grauslund, M., Sokilde, B., Carstensen, E. V., Dvinge, H. K., Scudiero, D. A., Jensen, P. B., Shoemaker, R. H. and Sehested, M. (2005) Substituted purine analogues define a novel structural class of catalytic topoisomerase II inhibitors. Cancer Res. 65, 7470-7477. https://doi.org/10.1158/0008-5472.CAN-05-0707
  20. Jez, J. M., Chen, J. C., Rastelli, G., Stroud, R. M. and Santi, D. V. (2003) Crystal structure and molecular modeling of 17-DMAG in complex with human Hsp90. Chem. Biol. 10, 361-368. https://doi.org/10.1016/S1074-5521(03)00075-9
  21. Jimenez-Alonso, S., Orellana, H. C., Estevez-Braun, A., Ravelo, A. G., Perez-Sacau, E. and Machin, F. (2008) Design and synthesis of a novel series of pyranonaphthoquinones as topoisomerase II catalytic inhibitors. J. Med. Chem. 51, 6761-6772. https://doi.org/10.1021/jm800499x
  22. Jun, K. Y., Lee, E. Y., Jung, M. J., Lee, O. H., Lee, E. S., Park Choo, H. Y., Na, Y. and Kwon, Y. (2011) Synthesis, biological evaluation, and molecular docking study of 3-(3'-heteroatom substituted-2'-hydroxy-1'-propyloxy) xanthone analogues as novel topoisomerase $II{\alpha}$ catalytic inhibitor. Eur. J. Med. Chem. 46, 1964-1971. https://doi.org/10.1016/j.ejmech.2011.01.011
  23. Kang, K., Nho, C. W., Kim, N. D., Song, D. G., Park, Y. G., Kim, M., Pan, C. H., Shin, D., Oh, S. H. and Oh, H. S. (2014) Daurinol, a catalytic inhibitor of topoisomerase $II{\alpha}$, suppresses SNU-840 ovarian cancer cell proliferation through cell cycle arrest in S phase. Int. J. Oncol. 45, 558-566. https://doi.org/10.3892/ijo.2014.2442
  24. Kreusch, A., Han, S., Brinker, A., Zhou, V., Choi, H. S., He, Y., Lesley, S. A., Caldwell, J. and Gu, X. J. (2005) Crystal structures of human HSP90alpha-complexed with dihydroxyphenylpyrazoles. Bioorg. Med. Chem. Lett. 15, 1475-1478. https://doi.org/10.1016/j.bmcl.2004.12.087
  25. Kung, P. P., Funk, L., Meng, J., Collins, M., Zhou, J. Z., Johnson, M. C., Ekker, A., Wang, J., Mehta, P., Yin, M. J., Rodgers, C., Davies, J. F., 2nd, Bayman, E., Smeal, T., Maegley, K. A. and Gehring, M. R. (2008) Dihydroxylphenyl amides as inhibitors of the Hsp90 molecular chaperone. Bioorg. Med. Chem. Lett. 18, 6273-6278. https://doi.org/10.1016/j.bmcl.2008.09.081
  26. Li, P. H., Zeng, P., Chen, S. B., Yao, P. F., Mai, Y. W., Tan, J. H., Ou, T. M., Huang, S. L., Li, D., Gu, L. Q. and Huang, Z. S. (2016) Synthesis and mechanism studies of 1,3-benzoazolyl substituted pyrrolo[2,3-b]pyrazine derivatives as nonintercalative topoisomerase II catalytic inhibitors. J. Med. Chem. 59, 238-252. https://doi.org/10.1021/acs.jmedchem.5b01284
  27. Li, Y., Luan, Y., Qi, X., Li, M., Gong, L., Xue, X., Wu, X., Wu, Y., Chen, M., Xing, G., Yao, J. and Ren, J. (2010) Emodin triggers DNA double-strand breaks by stabilizing topoisomerase II-DNA cleavage complexes and by inhibiting atp hydrolysis of topoisomerase II. Toxicol. Sci. 118, 435-443. https://doi.org/10.1093/toxsci/kfq282
  28. Liang, J., Edelsbrunner, H. and Woodward, C. (1998) Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design. Protein Sci. 7, 1884-1897. https://doi.org/10.1002/pro.5560070905
  29. Ma, Y., Wang, J. G., Wang, B. and Li, Z. M. (2011) Integrating molecular docking, DFT and CoMFA/CoMSIA approaches for a series of naphthoquinone fused cyclic ${\alpha}$-aminophosphonates that act as novel topoisomerase II inhibitors. J. Mol. Model. 17, 1899-1909. https://doi.org/10.1007/s00894-010-0898-y
  30. Moulin, E., Barluenga, S. and Winssinger, N. (2005a) Concise synthesis of pochonin A, an HSP90 inhibitor. Org. Lett. 7, 5637-5639. https://doi.org/10.1021/ol052263+
  31. Moulin, E., Zoete, V., Barluenga, S., Karplus, M. and Winssinger, N. (2005b) Design, synthesis, and biological evaluation of HSP90 inhibitors based on conformational analysis of radicicol and its analogues. J. Am. Chem. Soc. 127, 6999-7004. https://doi.org/10.1021/ja043101w
  32. Murray, C. W., Carr, M. G., Callaghan, O., Chessari, G., Congreve, M., Cowan, S., Coyle, J. E., Downham, R., Figueroa, E., Frederickson, M., Graham, B., McMenamin, R., O'Brien, M. A., Patel, S., Phillips, T. R., Williams, G., Woodhead, A. J. and Woolford, A. J. (2010) Fragment-based drug discovery applied to Hsp90. Discovery of two lead series with high ligand efficiency. J. Med. Chem. 53, 5942-5955. https://doi.org/10.1021/jm100059d
  33. Neckers, L. (2002) Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol. Med. 8, S55-S61. https://doi.org/10.1016/S1471-4914(02)02316-X
  34. Nitiss, J. L. (2009a) Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer 9, 338-350. https://doi.org/10.1038/nrc2607
  35. Nitiss, J. L. (2009b) DNA topoisomerase II and its growing repertoire of biological functions. Nat. Rev. Cancer 9, 327-337. https://doi.org/10.1038/nrc2608
  36. Park, S. E., Chang, I. H., Jun, K. Y., Lee, E., Lee, E. S., Na, Y. and Kwon, Y. (2013) 3-(3-butylamino-2-hydroxy-propoxy)-1-hydroxyxanthen-9-one acts as a topoisomerase $II{\alpha}$ catalytic inhibitor with low DNA damage. Eur. J. Med. Chem. 69, 139-145. https://doi.org/10.1016/j.ejmech.2013.07.048
  37. Patel, K., Piagentini, M., Rascher, A., Tian, Z. Q., Buchanan, G. O., Regentin, R., Hu, Z., Hutchinson, C. R. and McDaniel, R. (2004) Engineered biosynthesis of geldanamycin analogs for Hsp90 inhibition. Chem. Biol. 11, 1625-1633. https://doi.org/10.1016/j.chembiol.2004.09.012
  38. Petrelli, A. and Giordano, S. (2008) From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. Curr. Med. Chem. 15, 422-432. https://doi.org/10.2174/092986708783503212
  39. Pogorelcnik, B., Perdih, A. and Solmajer, T. (2013) Recent advances in the development of catalytic inhibitors of human DNA topoisomerase $II{\alpha}$ as novel anticancer agents. Curr. Med. Chem. 20, 694-709. https://doi.org/10.2174/092986713804999402
  40. Putcha, P., Danzer, K. M., Kranich, L. R., Scott, A., Silinski, M., Mabbett, S., Hicks, C. D., Veal, J. M., Steed, P. M., Hyman, B. T. and McLean, P. J. (2010) Brain-permeable small-molecule inhibitors of Hsp90 prevent alpha-synuclein oligomer formation and rescue alpha-synuclein-induced toxicity. J. Pharmacol. Exp. Ther. 332, 849-857. https://doi.org/10.1124/jpet.109.158436
  41. Qin, Y., Meng, L., Hu, C., Duan, W., Zuo, Z., Lin, L., Zhang, X. and Ding, J. (2007) Gambogic acid inhibits the catalytic activity of human topoisomerase $II{\alpha}$ by binding to its ATPase domain. Mol. Cancer Ther. 6, 2429-2440. https://doi.org/10.1158/1535-7163.MCT-07-0147
  42. Roe, S. M., Prodromou, C., O'Brien, R., Ladbury, J. E., Piper, P. W. and Pearl, L. H. (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J. Med. Chem. 42, 260-266. https://doi.org/10.1021/jm980403y
  43. Rowlands, M. G., Newbatt, Y. M., Prodromou, C., Pearl, L. H., Workman, P. and Aherne, W. (2004) High-throughput screening assay for inhibitors of heat-shock protein 90 ATPase activity. Anal. Biochem. 327, 176-183. https://doi.org/10.1016/j.ab.2003.10.038
  44. Schulte, T. W. and Neckers, L. M. (1998) The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother. Pharmacol. 42, 273-279. https://doi.org/10.1007/s002800050817
  45. Sidera, K. and Patsavoudi, E. (2014) HSP90 inhibitors: current development and potential in cancer therapy. Recent Pat. Anticancer Drug Discov. 9, 1-20.
  46. Soga, S., Neckers, L. M., Schulte, T. W., Shiotsu, Y., Akasaka, K., Narumi, H., Agatsuma, T., Ikuina, Y., Murakata, C., Tamaoki, T. and Akinaga, S. (1999) KF25706, a novel oxime derivative of radicicol, exhibits in vivo antitumor activity via selective depletion of Hsp90 binding signaling molecules. Cancer Res. 59, 2931-2938.
  47. Soga, S., Sharma, S. V., Shiotsu, Y., Shimizu, M., Tahara, H., Yamaguchi, K., Ikuina, Y., Murakata, C., Tamaoki, T., Kurebayashi, J., Schulte, T. W., Neckers, L. M. and Akinaga, S. (2001) Stereospecific antitumor activity of radicicol oxime derivatives. Cancer Chemother. Pharmacol. 48, 435-445. https://doi.org/10.1007/s002800100373
  48. Wang, B., Miao, Z. W., Wang, J., Chen, R. Y. and Zhang, X. D. (2008) Synthesis and biological evaluation of novel naphthoquinone fused cyclic aminoalkylphosphonates and aminoalkylphosphonic monoester. Amino Acids 35, 463-468. https://doi.org/10.1007/s00726-007-0570-8
  49. Wang, P., Leung, C. H., Ma, D. L., Lu, W. and Che, C. M. (2010) Organoplatinum(II) complexes with nucleobase motifs as inhibitors of human topoisomerase II catalytic activity. Chem. Asian J. 5, 2271-2280. https://doi.org/10.1002/asia.201000451
  50. Wei, H., Ruthenburg, A. J., Bechis, S. K. and Verdine, G. L. (2005) Nucleotide-dependent domain movement in the ATPase domain of a human type IIA DNA topoisomerase. J. Biol. Chem. 280, 37041-37047. https://doi.org/10.1074/jbc.M506520200
  51. Xu, X. L., Bao, Q. C., Jia, J. M., Liu, F., Guo, X. K., Zhang, M. Y., Wei, J. L., Lu, M. C., Xu, L. L., Zhang, X. J., You, Q. D. and Sun, H. P. (2016) CPUY201112, a novel synthetic small-molecule compound and inhibitor of heat shock protein Hsp90, induces p53-mediated apoptosis in MCF-7 cells. Sci. Rep. 6, 19004. https://doi.org/10.1038/srep19004
  52. Yang, S. Y., Jia, X. Z., Feng, L. Y., Li, S. Y., An, G. S., Ni, J. H. and Jia, H. T. (2009) Inhibition of topoisomerase ii by 8-chloro-adenosine triphosphate induces DNA double-stranded breaks in 8-chloro-adenosine-exposed human myelocytic leukemia K562 cells. Biochem. Pharmacol. 77, 433-443. https://doi.org/10.1016/j.bcp.2008.10.022
  53. Yang, Z. Q., Geng, X., Solit, D., Pratilas, C. A., Rosen, N. and Danishefsky, S. J. (2004) New efficient synthesis of resorcinylic macrolides via ynolides: Establishment of cycloproparadicicol as synthetically feasible preclinical anticancer agent based on Hsp90 as the target. J. Am. Chem. Soc. 126, 7881-7889. https://doi.org/10.1021/ja0484348
  54. Yao, Q., Weigel, B. and Kersey, J. (2007) Synergism between etoposide and 17-AAG in leukemia cells: Critical roles for Hsp90, FLT3, topoisomerase II, Chk1, and Rad51. Clin. Cancer Res. 13, 1591-1600. https://doi.org/10.1158/1078-0432.CCR-06-1750

Cited by

  1. A novel indeno[1,2-b]pyridinone derivative, a DNA intercalative human topoisomerase IIα catalytic inhibitor, for caspase 3-independent anticancer activity vol.53, pp.51, 2017, https://doi.org/10.1039/C7CC02372C
  2. Multi-Targeting Anticancer Agents: Rational Approaches, Synthetic Routes and Structure Activity Relationship vol.19, pp.7, 2016, https://doi.org/10.2174/1871520619666190118120708
  3. A chromenone analog as an ATP-competitive, DNA non-intercalative topoisomerase II catalytic inhibitor with preferences toward the alpha isoform vol.55, pp.85, 2016, https://doi.org/10.1039/c9cc05524j
  4. Dual Inhibitors of Human DNA Topoisomerase II and Other Cancer-Related Targets vol.63, pp.3, 2016, https://doi.org/10.1021/acs.jmedchem.9b00726
  5. The Use of Methods of Computer-Aided Drug Discovery in the Development of Topoisomerase II Inhibitors: Applications and Future Directions vol.60, pp.8, 2016, https://doi.org/10.1021/acs.jcim.0c00325
  6. Cannabidiol oxidation product HU-331 is a potential anticancer cannabinoid-quinone: a narrative review vol.3, pp.1, 2016, https://doi.org/10.1186/s42238-021-00067-z