• Title/Summary/Keyword: Protein Kinase A

Search Result 2,491, Processing Time 0.03 seconds

Effects of Tobacco-Specific Carcinogen on Protein Kinase C Isoforms (흡연특이성 발암물질이 특정 Protein Kinase C Isoform에 미치는 영향)

  • Kang, Hyung-Seok;Ko, Moo-Sung;Park, Ki-Sung;Lee, Sub;Jheon, Sang-Hoon;Kwon, Oh-Choon
    • Journal of Chest Surgery
    • /
    • v.36 no.9
    • /
    • pp.666-673
    • /
    • 2003
  • Cigarette smoking is the leading cause of the lung cancer. However, mechanism of action underlying the carcinogenesis in the lung still remains to be elucidated. The present study attempted to look into the carcinogenic potential of tobacco-specific nitrosamine, NNK (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone) and the effects of protein kinase C (PKC) isoforms in an immortalized human epithelial cell model. Material and Method: Immortalized human epithelial cells were exposed with NNK and examined for its carcinogenic potential as measured by saturation density, soft-agar colony formation, and cell aggregation assay. The specific isoform of PKCs involved in the cellular transformation was analysed through western blot with monoclonal antibody and measured separately in cytosolic fraction and membrane fraction. Result: Human epithelial cells exposed with NNK showed prominent carcinogenic potential in saturation density, soft agar colony formation, and cell aggregation assay. PKC isoform analysis results are as follows: PKC- $\alpha$ showed significant translocation of protein levels from cytosolic fraction to membrane fraction, as analyzed by immunoblot. PKC- $\varepsilon$ showed a dose-dependent increase of translocation. PKC- λ was not affected by NNK treatment. Conclusion: The study demonstrated that there was a certain specificity in the patterns of isoform induction following chemical carcinogen exposure. Thus, it is suggested that identification of specific isoform be a clue to find target molecules in the carcinogenesis.

Chromium acetate stimulates adipogenesis through regulation of gene expression and phosphorylation of adenosine monophosphate-activated protein kinase in bovine intramuscular or subcutaneous adipocytes

  • Kim, Jongkyoo;Chung, Kiyong;Johnson, Bradley J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.651-661
    • /
    • 2020
  • Objective: We hypothesized that Cr source can alter adipogenic-related transcriptional regulations and cell signaling. Therefore, the objective of the study was to evaluate the biological effects of chromium acetate (CrAc) on bovine intramuscular (IM) and subcutaneous (SC) adipose cells. Methods: Bovine preadipocytes isolated from two different adipose tissue depots; IM and SC were used to evaluate the effect of CrAc treatment during differentiation on adipogenic gene expression. Adipocytes were incubated with various doses of CrAc: 0 (differentiation media only, control), 0.1, 1, and 10 μM. Cells were harvested and then analyzed by real-time quantitative polymerase chain reaction in order to measure the quantity of adenosine monophosphate-activated protein kinase-α (AMPK-α), CCAAT enhancer binding protein-β (C/EBPβ), G protein-coupled receptor 41 (GPR41), GPR43, peroxisome proliferator-activated receptor-γ (PPARγ), and stearoyl CoA desaturase (SCD) mRNA relative to ribosomal protein subunit 9 (RPS9). The ratio of phosphorylated-AMPK (pAMPK) to AMPK was determined using a western blot technique in order to determine changing concentration. Results: The high dose (10 μM) of CrAc increased C/EBPβ, in both IM (p = 0.02) and SC (p = 0.02). Expression of PPARγ was upregulated by 10 μM of CrAc in IM but not in SC. Expression of SCD was also increased in both IM and SC with 10 μM of CrAc treatment. Addition of CrAc did not alter gene expression of glucose transporter 4, GPR41, or GPR43 in both IM and SC adipocytes. Addition of CrAc, resulted in a decreased pAMPKα to AMPKα ration (p<0.01) in IM. Conclusion: These data may indicate that Cr source may influence lipid filling in IM adipocytes via inhibitory action of AMPK phosphorylation and upregulating expression of adipogenic genes.

Apoptotic Signaling Pathways: Caspases and Stress-Activated Protein Kinases

  • Cho, Ssang-Goo;Choi, Eui-Ju
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.24-27
    • /
    • 2002
  • Apoptotic cell death is an active process mediated by various signaling pathways, which include the caspase cascade and the stress-activated protein kinase pathways. The caspase cascade is activated by two distinct routes: one from cell surface and the other from mitochondria. Activation of the route from cell surface requires the cellular components that include membrane receptors, adaptor proteins such as TRADD and FADD, and caspase-8, while activation of the other from mitochondria requires Apaf-1, caspase-9, and cytosolic cytochrome c. On the other hand, persistent stimulation of the stress-activated protein kinase pathway is also shown to mediate apoptosis in many cell types. Gene-targeting studies with jnk- or jip-null mice, in particular, strongly suggest that this signaling pathway plays a pivotal role in the cellular machinery for apoptosis.

Antagonists of Phosphatidylinositol 3-Kinase Block Phosphorylation-Dependent Activation of the Leukocyte NADPH Oxidase in a Cell-Free System

  • Park, Jeen-Woo
    • BMB Reports
    • /
    • v.30 no.3
    • /
    • pp.182-187
    • /
    • 1997
  • The NADPH oxidase of phagocytes catalyzes the reduction of oxygen to $O_2^-$ at the expense of NADPH. The enzyme is dormant in resting neutrophils and becomes activated on stimulation. During activation, $p47^{phox}\;(\underline{ph}agocyte\;\underline{ox}idase\;factor)$, a cytosolic oxidase subunit, becomes extensively phosphorylated at a number of serines located between S303-S379. Oxidase activation can also be achieved by the addition of phosphorylated recombinant $p47^{phox}$ by protein kinase C in the cell-free system in the presence of $GTP{\gamma}S$. The cell-free activation is inhibited by wortmannin and LY294002. specific inhibitors of phosphatidylinositol 3kinase (PI 3-kinasel) These results indicate that PI 3-kinase may playa pivotal role in the activation of NADPH oxidase.

  • PDF

Insulin induces nuclear translocation of insulin receptor and tyrosine phosphorylation of nuclear proteins in osteoblast (조골세포에서 인슐린 수용체의 세포핵으로의 이동과 타이로신 인산화)

  • Seol, Ki-Chun;Kim, Sung-Jin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.101-101
    • /
    • 2001
  • In the present study, we explored to determine if insulin has any effect on the nuclear translocation of insulin receptor and tyrosine phosphoryaltion of nuclear proteins in the UMR-106 cells. Significant amount of insulin receptors and IRS-1 proteins were detected in the nucleus. IRS-1 and PI$_3$-Kinase appeared to translocate to the nucleus in a time dependent manner. Tyrosine phosphorylation of a number of proteins including 180 KDa, 85 KDa protein in the nucleus was significantly stimulated by insulin, suggesting IRS-1 and PI$_3$-Klnase was activated in the nucleus by insulin treatment. In addition, p70 S6 Kinase, a downstream target of PI3-Kinase was transiently appeared in the nucleus by insulin and its activity was stimulated by insulin. These results suggest that the insulin signaling system containing insulin receptor, IRS-1, PI$_3$-Kinase and p70 S6 Kinase operates in the nucleus of osteoblast cells. The nuclear insulin-mediated tyrosine phosphorylation may play an essential role in the gene expression, differentiation and growth of osteoblast cells.

  • PDF

Imipramine Inhibits A-type Delayed Rectifier and ATP-Sensitive $K^{+}$ Currents Independent of G-Protein and Protein Kinase C in Murine Proximal Colonic Myocytes

  • Choi, Seok;Parajuli, Shankar Prasad;Lim, Geon-Han;Kim, Jin-Ho;Yeum, Cheol-Ho;Yoon, Pyung-Jin;Jun, Jae-Yeoul
    • Archives of Pharmacal Research
    • /
    • v.29 no.11
    • /
    • pp.998-1005
    • /
    • 2006
  • The effects of imipramine on A-type delayed rectifier $K^{+}$ currents and ATP-sensitive $K^{+}\;(K_{ATP)$ currents were studied in isolated murine proximal colonic myocytes using the whole-cell patch-clamp technique. Depolarizing test pulses between-80 mV and +30 mV with 10 mV increments from the holding potential of-80 mV activated voltage-dependent outward $K^{+}$ currents that peaked within 50 ms followed by slow decreasing sustained currents. Early peak currents were inhibited by the application of 4-aminopyridine, whereas sustained currents were inhibited by the application of TEA. The peak amplitude of A-type delayed rectifier $K^{+}$ currents was reduced by external application of imipramine. The half-inactivation potential and the half-recovery time of A-type delayed rectifier $K^{+}$ currents were not changed by imipramine. With 0.1 mM ATP and 140 mM $K^{+}$ in the pipette and 90 mM $K^{+}$ in the bath solution and a holding potential of -80 mV, pinacidil activated inward currents; this effect was blocked by glibenclamide. Imipramine also inhibited $K_{ATP}$ currents. The inhibitory effects of imipramine in A-type delayed rectifier $K^{+}$ currents and $K_{ATP}$ currents were not changed by guanosine 5-O-(2-thiodiphosphate) ($GDP{\beta}S$) and chelerythrine, a protein kinase C inhibitor. These results suggest that imipramine inhibits A-type delayed rectifier $K^{+}$ currents and $K_{ATP}$ currents in a manner independent of G-protein and protein kinase C.

Synthesis and Photoaffinity Labeling of 3'(2')-O-(p-azidobenzoyl) ATP

  • Shin, Seung-Jin;Lee, Woo-Kyoung;Park, Jong-Sang
    • BMB Reports
    • /
    • v.30 no.3
    • /
    • pp.211-215
    • /
    • 1997
  • A photoactive analog of ATP, 3'(2')-O-(p-azidobenzoyl)-adenosine 5-triphosphate (AB-ATP) was synthesized by chemically coupling N-hydroxysuccinimidyl-4-azidobenzoate (NHS-AB) and ATP. The utility of AB-ATP as an effective active-site-directed photoprobe was demonstrated using catalytic subunit of protein kinase A as a model enzyme. Photoincorporation of AB-ATP was saturated with apparent dissociation constant of $30{\mu}m$ and protected completely by $100{\mu}m$ of ATP. When the enzyme was covalently modified by photolysis in the presence of saturating amounts of photoprobe, about 60% inhibition of enzyme activity was observed. These results demonstrate that AB-ATP has potential application as a probe to characterize ATP-binding proteins including protein kinases.

  • PDF

Angiotensin Il-Mediated Stimulation of Phospholipase D in Rabbit Kidney Proximal Tubule Cells

  • Jung, Jin-Ho;Jung, Jee-Chang;Chung, Sung-Hyun
    • Archives of Pharmacal Research
    • /
    • v.17 no.6
    • /
    • pp.405-410
    • /
    • 1994
  • The present study was undetertaken to demonstrate whether or not angiotensin II activates a phopholipase D in rabbit kidney proximal tubule cells. By measuring the formation of [$^3H$] phosphatidic acid and [$^3H$]diacylglycerol. This result suggests that some phosphatidic acid seems to be formed directly from phosphatidylcholin by the action of phopholipase D, not from the action of diacylglycerol kinase on the diacylglycerol. In addition the other mechanisms by which phospholipase D is activated was examined. We have found that phospholipase D was activited by extracellular calium ion. It has also been shown that angiotensin II may activate phosphoilpase D through protein kinase C-independent pathway.

  • PDF

Lysophosphatidic acid Inhibits Melanocyte Proliferation via Cell Cycle Arrest

  • Kim, Dong-Seok;Park, Seo-Hyoung;Kim, Sung-Eun;Sohn, Uy-Dong;Park, Kyoung-Chan
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.96.1-96.1
    • /
    • 2003
  • Lysophosphatidic acid (LPA) is a well-known mitogen in various cell types. However, we were surprised to find that LPA inhibits melanocyte proliferation. Thus, we further investigated the possible signaling pathways involved in melanocyte growth inhibition. We first examined the regulation of the three major subfamilies of mitogen-activated protein (MAP) kinases and of the Akt pathway by LPA. The activations of extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) were observed in concert with the inhibition of melanocyte proliferation by LPA, whereas p38 MAP kinase and Akt were not influenced by LPA. (omitted)

  • PDF

Monoclonal Antibody Recognizing Nervous System Specific Protein of Drosophila melanogaster (초파리 신경계특이적인 단일클론항체의 제작과 그 항원의 국재)

  • 윤춘식
    • Journal of Life Science
    • /
    • v.8 no.5
    • /
    • pp.571-575
    • /
    • 1998
  • The nerve system specific protein of Drosophila melanogaster was produced by using heads of flies as the antigen. The monoclonal antibody 6H6 recognized the disabled molecules that a kind of tyrosine kinase substrate by expres-sion cDNA library screening method. At the same time, the antibody also specifically recognized C-terminal region of disabled protein from 7427 to 8761bp by DNA sequencing. In early embryos, the localization of antigen appeared in the central nerve system. In adult flies, the antigen showed specific localization on the axon of optic nerve, cerebral nerve and thoracic nerve, and they also expressed on the muscular nerve. The molecules of disabled are expected to carry an important function in developing central nerve system. In adult flies, it is suggested that the disabled molecules have a role for muscular nerve as well as neural axon.

  • PDF