DOI QR코드

DOI QR Code

Apoptotic Signaling Pathways: Caspases and Stress-Activated Protein Kinases

  • Cho, Ssang-Goo (National Creative Research Initiative Center for Cell Death, Graduate School of Biotechnology, Korea University) ;
  • Choi, Eui-Ju (National Creative Research Initiative Center for Cell Death, Graduate School of Biotechnology, Korea University)
  • Published : 2002.01.31

Abstract

Apoptotic cell death is an active process mediated by various signaling pathways, which include the caspase cascade and the stress-activated protein kinase pathways. The caspase cascade is activated by two distinct routes: one from cell surface and the other from mitochondria. Activation of the route from cell surface requires the cellular components that include membrane receptors, adaptor proteins such as TRADD and FADD, and caspase-8, while activation of the other from mitochondria requires Apaf-1, caspase-9, and cytosolic cytochrome c. On the other hand, persistent stimulation of the stress-activated protein kinase pathway is also shown to mediate apoptosis in many cell types. Gene-targeting studies with jnk- or jip-null mice, in particular, strongly suggest that this signaling pathway plays a pivotal role in the cellular machinery for apoptosis.

Keywords

References

  1. Arends, M. J. and Wyllie, A. H. (1991) Apoptosis: mechanisms and roles in pathology. Int. Rev. Exp. Path. 32, 223-354. https://doi.org/10.1016/B978-0-12-364932-4.50010-1
  2. Ashkenazi, A. and Dixit, V. M. (1999) Apoptosis control by death and decoy receptors. Curr. Opin. Cell Biol. 11, 255-260. https://doi.org/10.1016/S0955-0674(99)80034-9
  3. Baker, S. J. and Reddy, E. P. (1998) Modulation of life and death by the TNF receptor superfamily. Oncogene 17, 3261-3270. https://doi.org/10.1038/sj.onc.1202568
  4. Chai, J., Du, C., Wu, J. -W., Kyin, S., Wang, X. and Shi, Y. (2000) Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406, 855-862. https://doi.org/10.1038/35022514
  5. Chang, H. Y., Nishitoh, H., Yang, X., Ichijo. H. and Baltimore. D.(1998) Activation of apoptosis signal-regulating kinase 1(ASK1) by the adapter protein Daxx. Science 281, 1860-1863. https://doi.org/10.1126/science.281.5384.1860
  6. Chang, L. and Karin, M. (2001) Mammalian MAP kinase signaling cascades. Nature 410, 37-40. https://doi.org/10.1038/35065000
  7. Davis, R. J. (2000) Signal transduction by the JNK group of MAP kinases. Cell 103, 239-252. https://doi.org/10.1016/S0092-8674(00)00116-1
  8. Du, C., Fang, M., Li, Y., Li, L. and Wang, X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42. https://doi.org/10.1016/S0092-8674(00)00008-8
  9. Goltsev, Y.V., Kovalenko, A. V., Arnold, E., Varfolomeev, E. E., Brodianskii, V. M. and Wallach, D. (1997) CASH, a novel caspase homologue with death effector domains. J. Biol. Chem.272, 19641-19644. https://doi.org/10.1074/jbc.272.32.19641
  10. Hengartner, M.O. (2000) The biochemistry of apoptosis. Nature 407, 771-776.
  11. Hengartner, M. O. and Horvitz, H. R. (1994) C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76, 665-676. https://doi.org/10.1016/0092-8674(94)90506-1
  12. Hu, S., Vincenz, C., Ni, J., Gentz, R. and Dixit, V. M. (1997) IFLICE, a novel inhibitor of tumor necrosis factor receptor-1-and CD-95-induced apoptosis. J. Biol. Chem. 272, 17255-17257. https://doi.org/10.1074/jbc.272.28.17255
  13. Hunot, S. and Flavell, R. A. (2001) Apoptosis. Death of a monopoly? Science 292, 865-866. https://doi.org/10.1126/science.1060885
  14. Irmler, M., Thome, M., Hahne, M., Schneider, P., Hofmann, K., Steiner, V., Bodmer, J.-L., Schroter, M., Burns, K., Mattmann,C., Rimoldi, D., French, L. E. and Tschopp, J. (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388, 190-195. https://doi.org/10.1038/40657
  15. Inohara, N., Koseki, T., Hu, Y., Chen, S. and Nunez, G. (1997) CLARP, a death effector domain-containing protein interacts with caspase-8 and regulates apoptosis. Proc. Nat. Acad. Sci. USA 94, 10717-10722. https://doi.org/10.1073/pnas.94.20.10717
  16. Kaufmann, S. H. and Hengartner, M.O. (2001) Programmed cell death: alive and well in the new millennium. Trends Cell Biol. 11, 526-534. https://doi.org/10.1016/S0962-8924(01)02173-0
  17. Kerr, J. E, Wylie, A. H. and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer. 26, 239-257. https://doi.org/10.1038/bjc.1972.33
  18. Kuan, C. Y., Yang, D. D., Samanta Roy, D. R., Davis, R. J., Rakic, P. and Flavell, R. A. (1999) The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22, 667-676. https://doi.org/10.1016/S0896-6273(00)80727-8
  19. Kumar, S. and Colussi, P. A. (1999) Prodomains--adaptors-oligomerization: the pursuit of caspase activation in apoptosis. Trends Biochern. Sci. 24, 1-4. https://doi.org/10.1016/S0968-0004(98)01332-2
  20. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S. and Wang, X. Cytochrome c and dATP dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489.
  21. Liu, X., Kim, C. N., Yang, J., Jemmerson, R. and Wang X. (1996) Induction of Apoptotic Program in Cell-Free Extracts: Requirement for dATP and Cytochrome c. Cell 86, 147157.
  22. Liu, Z., Sun, C., Olejniczak, E. T., Meadows, R. P., Betz, S. F.; Oost, T., Herrmann, J., Wu, J. C. and Fesik, S. W. (2000) Structural basis for binding of Smac/DlABLO to the XIAP BIR3 domain. Nature 408, 1004-1008. https://doi.org/10.1038/35050006
  23. Metzstein, M. M., Stanfield, G. M. and Horvitz, H. R. (1998) Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet. 14, 410-416. https://doi.org/10.1016/S0168-9525(98)01573-X
  24. Shu, H.-B., Halpin, D. R. and Goeddel, D. V. (1997) Casper is a FADD- and caspase-related inducer of apoptosis. Immunity 6, 751-763. https://doi.org/10.1016/S1074-7613(00)80450-1
  25. Susin, S. A., Lorenzo, H. K., Zarnzarni, N., Marzo, I., Snow, B.E., Brothers, G. M., Mangion, J., Jacotot, E., Constantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R.,Siderovski, D. P., Penninger, J. M. and Kroemer, G. (1999)Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441-446. https://doi.org/10.1038/17135
  26. Thompson, C. B. (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456-1462. https://doi.org/10.1126/science.7878464
  27. Tournier, C., Hess, P., Yang, D. D., Xu, J., Turner, T. K., Nimnual, A., Bar-Sagi, D., Jones, S. N., Flavell, R. A. and Davis, R. J.(2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288, 870-874. https://doi.org/10.1126/science.288.5467.870
  28. Verhagen, A. M., Ekert, P. G., Pakusch, M., Silke, J., Connolly, L. M., Reid, G. E., Moritz, R. L., Simpson, R. J. and Vaux, D. L.(2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing lAP proteins. Cell 102, 43-53. https://doi.org/10.1016/S0092-8674(00)00009-X
  29. Whitmarsh, A. J., Kuan, C. Y, Kennedy, N. J., Kelkar, N., Haydar, T. F., Mordes, J. P., Appel, M., Rossini, A. A., Jones,S. N., Flavell, R. A., Rakic, P. and Davis R.J. (2001) Requirement of the JlP1 scaffold protein for stress-induced JNK activation. Genes Dev. 15,2421-2432. https://doi.org/10.1101/gad.922801
  30. Wu, G., Chai, J., Suber, T. L., Wu, J.-W., Du, C., Wang, X. and Shi, Y. (2000) Structural basis of lAP recognition by Smac/DIABLO. Nature 408, 1008-1012. https://doi.org/10.1038/35050012
  31. Yang, D. D., Kuan, C. Y., Whitmarsh, A. J., Rincon, M., Zheng, T. S., Davis, R. J., Rakic, P. and Flavell, R. A. (1997) Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389, 865-870. https://doi.org/10.1038/39899
  32. Yang, X., Khosravi-Far, R., Chang, H. Y. and Baltimore, D. (1997) Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell 89, 1067-1076. https://doi.org/10.1016/S0092-8674(00)80294-9
  33. Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M. and Horvitz, H. R.(1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75, 641-652. https://doi.org/10.1016/0092-8674(93)90485-9
  34. Zou, H., Henzel, W. J., Liu, X., Lutschg, A. and Wang, X. (1997) APAF-1, a human protein homologous to C. elegans CED-4,participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405-413. https://doi.org/10.1016/S0092-8674(00)80501-2

Cited by

  1. Arsenic Trioxide Induces A poptosis in Human Colorectal Adenocarcinoma HT-29 Cells Through ROS vol.38, pp.1, 2006, https://doi.org/10.4143/crt.2006.38.1.54
  2. (–)Gossypol and its combination with imatinib induce apoptosis in human chronic myeloid leukemic cells vol.48, pp.11, 2007, https://doi.org/10.1080/10428190701583991
  3. Alpha 1-Antichymotrypsin, an Inflammatory Protein Overexpressed in the Brains of Patients with Alzheimer’s Disease, Induces Tau Hyperphosphorylation through c-Jun N-Terminal Kinase Activation vol.2013, 2013, https://doi.org/10.1155/2013/606083
  4. Expression of Bax, Bcl-xL and Bcl-2 proteins in relation to grade of inflammation and stage of fibrosis in chronic hepatitis C vol.50, pp.7, 2007, https://doi.org/10.1111/j.1365-2559.2007.02697.x
  5. MMPT as a reactive oxygen species generator induces apoptosis via the depletion of intracellular GSH contents in A549 cells vol.688, pp.1-3, 2012, https://doi.org/10.1016/j.ejphar.2012.05.003
  6. The effect of menadione on glutathione S-transferase A1 (GSTA1): c-Jun N-terminal kinase (JNK) complex dissociation in human colonic adenocarcinoma Caco-2 cells vol.214, pp.1, 2012, https://doi.org/10.1016/j.toxlet.2012.08.007
  7. γ-Tocotrienol Inhibits Proliferation and Induces Apoptosis Via the Mitochondrial Pathway in Human Cervical Cancer HeLa Cells vol.22, pp.8, 2017, https://doi.org/10.3390/molecules22081299
  8. Synthesis and antitumor activity of novel enediyne-linked pyrrolo[2,1-c][1,4]benzodiazepine hybrids vol.17, pp.3, 2009, https://doi.org/10.1016/j.bmc.2008.12.036
  9. Strophalloside Induces Apoptosis of SGC-7901 Cells through the Mitochondrion-Dependent Caspase-3 Pathway vol.20, pp.4, 2015, https://doi.org/10.3390/molecules20045714
  10. The sodium/hydrogen exchanger: A possible mediator of immunity vol.240, pp.2, 2006, https://doi.org/10.1016/j.cellimm.2006.07.001
  11. Size-mediated cytotoxicity and apoptosis of hydroxyapatite nanoparticles in human hepatoma HepG2 cells vol.31, pp.4, 2010, https://doi.org/10.1016/j.biomaterials.2009.09.088
  12. Expression of astrocyte elevated gene-1 (AEG-1) in human meningiomas and its roles in cell proliferation and survival vol.121, pp.1, 2015, https://doi.org/10.1007/s11060-014-1603-2
  13. Comparison of the rapid pro-apoptotic effect of trans-ß-nitrostyrenes with delayed apoptosis induced by the standard agent 5-fluorouracil in colon cancer cells vol.12, pp.1, 2007, https://doi.org/10.1007/s10495-006-0530-x
  14. Effect of Caspase Inhibitor Ac-DEVD-CHO on Apoptosis of Vascular Smooth Muscle Cells Induced by Artesunate vol.1, pp.1, 2014, https://doi.org/10.3934/bioeng.2014.1.13
  15. Identification of the up-regulated expression genes in hemocytes of variously colored abalone (Haliotis diversicolor Reeve, 1846) challenged with bacteria vol.32, pp.11, 2008, https://doi.org/10.1016/j.dci.2008.04.007
  16. AEG-1 expression characteristics in human non-small cell lung cancer and its relationship with apoptosis vol.30, pp.1, 2013, https://doi.org/10.1007/s12032-012-0383-9
  17. Isorhamnetin-3-O-Glucuronide Suppresses JNK and p38 Activation and Increases Heme-Oxygenase-1 in Lipopolysaccharide-Challenged RAW264.7 Cells vol.77, pp.3, 2016, https://doi.org/10.1002/ddr.21301
  18. Splenocyte apoptotic pathway in mice following oral exposure to cerium trichloride vol.83, pp.4, 2011, https://doi.org/10.1016/j.chemosphere.2010.12.013
  19. Cytotoxic Effect and Induction of Apoptosis in Human Cervical Cancer Cells by Antrodia camphorata vol.41, pp.05, 2013, https://doi.org/10.1142/S0192415X13500791
  20. Rethinking Alzheimer’s disease: The role of age-related changes vol.7, pp.4, 2007, https://doi.org/10.1007/s11910-007-0040-4
  21. Rosmanol potently induces apoptosis through both the mitochondrial apoptotic pathway and death receptor pathway in human colon adenocarcinoma COLO 205 cells vol.49, pp.2, 2011, https://doi.org/10.1016/j.fct.2010.11.030
  22. Induction of apoptosis by luteolin through cleavage of Bcl-2 family in human leukemia HL-60 cells vol.509, pp.1, 2005, https://doi.org/10.1016/j.ejphar.2004.12.026
  23. Synthesis and biological evaluation of thiobenzanilides as anticancer agents vol.16, pp.9, 2008, https://doi.org/10.1016/j.bmc.2008.03.003
  24. Remifentanil preconditioning alleviating brain damage of cerebral ischemia reperfusion rats by regulating the JNK signal pathway and TNF-α/TNFR1 signal pathway vol.40, pp.12, 2013, https://doi.org/10.1007/s11033-013-2819-5
  25. Activation of c-Jun N-terminal kinase by Akabane virus is required for apoptosis vol.107, 2016, https://doi.org/10.1016/j.rvsc.2016.06.007
  26. Differential cytotoxicity and particle action of hydroxyapatite nanoparticles in human cancer cells vol.9, pp.3, 2014, https://doi.org/10.2217/nnm.12.217
  27. Relationship Between Tau Pathology and Neuroinflammation in Alzheimer's Disease vol.77, pp.1, 2010, https://doi.org/10.1002/msj.20163
  28. Punicalagin induces Nrf2 translocation and HO-1 expression via PI3K/Akt, protecting rat intestinal epithelial cells from oxidative stress vol.32, pp.5, 2016, https://doi.org/10.3109/02656736.2016.1155762
  29. Flavones inhibit the proliferation of human tumor cancer cell lines by inducing apoptosis vol.35, pp.1, 2012, https://doi.org/10.3109/01480545.2011.564180
  30. Cytotoxic effects and the mechanism of three types of magnetic nanoparticles on human hepatoma BEL-7402 cells vol.6, pp.1, 2011, https://doi.org/10.1186/1556-276X-6-480
  31. β-sitosterol decreases irradiation-induced thymocyte early damage by regulation of the intracellular redox balance and maintenance of mitochondrial membrane stability vol.102, pp.3, 2007, https://doi.org/10.1002/jcb.21326
  32. Benzylideneacetone, an eicosanoid biosynthesis inhibitor enhances baculovirus pathogenicity in the diamondback moth, Plutella xylostella vol.106, pp.2, 2011, https://doi.org/10.1016/j.jip.2010.11.006
  33. Inhibitory effect of glycoprotein isolated from Ulmus davidiana Nakai on caspase 3 activity in 12-O-tetradecanoylphorbol 13-acetate–treated liver cells through the reduction of intracellular reactive oxygen species vol.27, pp.7, 2007, https://doi.org/10.1016/j.nutres.2007.05.001
  34. HIV-1 viral protein r induces ERK and caspase-8-dependent apoptosis in renal tubular epithelial cells vol.24, pp.8, 2010, https://doi.org/10.1097/QAD.0b013e328337b0ab
  35. Methylsulfonylmethane Induces p53 Independent Apoptosis in HCT-116 Colon Cancer Cells vol.17, pp.7, 2016, https://doi.org/10.3390/ijms17071123
  36. Targeted induction of apoptosis via TRAIL and cryoablation: a novel strategy for the treatment of prostate cancer vol.10, pp.2, 2007, https://doi.org/10.1038/sj.pcan.4500920
  37. Induction of apoptosis by the tropical seaweed Pylaiella littoralis in HT-29 cells via the mitochondrial and MAPK pathways vol.48, pp.4, 2013, https://doi.org/10.1007/s12601-013-0032-z
  38. Aneuploidy Arises at Early Stages of Apc-Driven Intestinal Tumorigenesis and Pinpoints Conserved Chromosomal Loci of Allelic Imbalance between Mouse and Human vol.170, pp.1, 2007, https://doi.org/10.2353/ajpath.2007.060853
  39. P2Y2nucleotide receptors inhibit trauma-induced death of astrocytic cells vol.103, pp.5, 2007, https://doi.org/10.1111/j.1471-4159.2007.04872.x
  40. Beta-asarone Induces LoVo Colon Cancer Cell Apoptosis by Up-regulation of Caspases through a Mitochondrial Pathway in vitro and in vivo vol.13, pp.10, 2012, https://doi.org/10.7314/APJCP.2012.13.10.5291
  41. N-(p-Coumaryol)-Tryptamine Suppresses the Activation of JNK/c-Jun Signaling Pathway in LPS-Challenged RAW264.7 Cells vol.22, pp.3, 2014, https://doi.org/10.4062/biomolther.2014.013
  42. Essential Oil from Cryptomeria japonica Induces Apoptosis in Human Oral Epidermoid Carcinoma Cells via Mitochondrial Stress and Activation of Caspases vol.17, pp.12, 2012, https://doi.org/10.3390/molecules17043890
  43. Role of heat shock proteins in oxygen radical–induced gastric apoptosis vol.193, pp.1, 2015, https://doi.org/10.1016/j.jss.2014.07.013
  44. Fibroblast growth factor (FGF21) protects mouse liver against d-galactose-induced oxidative stress and apoptosis via activating Nrf2 and PI3K/Akt pathways vol.403, pp.1-2, 2015, https://doi.org/10.1007/s11010-015-2358-6
  45. Apocynin Suppresses Lipopolysaccharide-Induced Inflammatory Responses Through the Inhibition of MAP Kinase Signaling Pathway in RAW264.7 Cells vol.77, pp.6, 2016, https://doi.org/10.1002/ddr.21321
  46. Essential oil and 1,8-cineole from Artemisia lavandulaefolia induces apoptosis in KB cells via mitochondrial stress and caspase activation vol.19, pp.1, 2010, https://doi.org/10.1007/s10068-010-0025-y
  47. [6]-Gingerol Induces Cell Cycle Arrest and Cell Death of Mutant p53-expressing Pancreatic Cancer Cells vol.47, pp.5, 2006, https://doi.org/10.3349/ymj.2006.47.5.688
  48. Use of modified halloysite nanotubes in the feed reduces the toxic effects of zearalenone on sow reproduction and piglet development vol.83, pp.5, 2015, https://doi.org/10.1016/j.theriogenology.2014.11.027
  49. Trade-off between thermal tolerance and insecticide resistance inPlutella xylostella vol.5, pp.2, 2015, https://doi.org/10.1002/ece3.1380
  50. A High Content in Lipid-modified Peripheral Proteins and Integral Receptor Kinases Features in theArabidopsisPlasma Membrane Proteome vol.6, pp.11, 2007, https://doi.org/10.1074/mcp.M700099-MCP200
  51. Cyclophosphamide-induced apoptosis in A431 cells is inhibited by fucosyltransferase IV vol.112, pp.5, 2011, https://doi.org/10.1002/jcb.23054
  52. Gene interactions in depression: pathways out of darkness vol.23, pp.11, 2007, https://doi.org/10.1016/j.tig.2007.08.011
  53. Oleate and eicosapentaenoic acid attenuate palmitate-induced inflammation and apoptosis in renal proximal tubular cell vol.402, pp.2, 2010, https://doi.org/10.1016/j.bbrc.2010.10.012
  54. Apoptosis-induced inhibition of CD1d-mediated antigen presentation: different roles for caspases and signal transduction pathways vol.125, pp.1, 2008, https://doi.org/10.1111/j.1365-2567.2008.02823.x
  55. Apoptotic and behavioral sequelae of mild brain trauma in mice vol.85, pp.4, 2007, https://doi.org/10.1002/jnr.21160
  56. The Effect of TGF-β2on MMP-2 Production and Activity in Highly Metastatic Human Bladder Carcinoma Cell Line 5637 vol.27, pp.5, 2009, https://doi.org/10.1080/07357900802620810
  57. Corosolic acid induces apoptosis through mitochondrial pathway and caspases activation in human cervix adenocarcinoma HeLa cells vol.284, pp.2, 2009, https://doi.org/10.1016/j.canlet.2009.04.028
  58. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review 2016, https://doi.org/10.1080/10408398.2016.1231168
  59. Mucosal trauma induced apoptosis in guinea pig middle ear: Comparision of hemostatic agents vol.78, pp.12, 2014, https://doi.org/10.1016/j.ijporl.2014.10.017
  60. Anti-oxidation and Antiapoptotic Effects of Chondroitin Sulfate on 6-Hydroxydopamine-Induced Injury Through the Up-Regulation of Nrf2 and Inhibition of Mitochondria-Mediated Pathway vol.40, pp.7, 2015, https://doi.org/10.1007/s11064-015-1628-8
  61. Butein Shows Cytotoxic Effects and Induces Apoptosis in Human Ovarian Cancer Cells vol.43, pp.04, 2015, https://doi.org/10.1142/S0192415X15500482
  62. Caspase-8: a key role in the pathogenesis of diabetic embryopathy vol.86, pp.1, 2009, https://doi.org/10.1002/bdrb.20185
  63. Cobalt Chloride-induced Apoptosis and Extracellular Signal-regulated Protein Kinase Activation in Human Cervical Cancer HeLa Cells vol.36, pp.5, 2003, https://doi.org/10.5483/BMBRep.2003.36.5.468
  64. Chicken Anemia Virus: An Understanding of theIn-VitroHost Response Over Time vol.24, pp.1, 2011, https://doi.org/10.1089/vim.2010.0064
  65. p53 phosphorylation is involved in vascular cell death induced by the catalytic activity of membrane-bound SSAO/VAP-1 vol.1783, pp.6, 2008, https://doi.org/10.1016/j.bbamcr.2008.02.014
  66. Drosophila T-box transcription factor Optomotor-blind prevents pathological folding and local overgrowth in wing epithelium through confining Hh signal vol.308, pp.1, 2007, https://doi.org/10.1016/j.ydbio.2007.05.007
  67. Liver Toxicity of Cadmium Telluride Quantum Dots (CdTe QDs) Due to Oxidative Stress in Vitro and in Vivo vol.16, pp.10, 2015, https://doi.org/10.3390/ijms161023279
  68. Purple sweet potato color protects mouse liver against d-galactose-induced apoptosis via inhibiting caspase-3 activation and enhancing PI3K/Akt pathway vol.48, pp.8-9, 2010, https://doi.org/10.1016/j.fct.2010.06.023
  69. HeLa cells treated with phytoglycoprotein (150 kDa) were killed by activation of caspase 3 via inhibitory activities of NF-κB and AP-1 vol.14, pp.2, 2007, https://doi.org/10.1007/s11373-006-9140-4
  70. Apoptosis-inducing factor: A matter of neuron life and death vol.81, pp.3, 2007, https://doi.org/10.1016/j.pneurobio.2006.12.002
  71. Effects of griseofulvin on apoptosis through caspase-3- and caspase-9-dependent pathways in K562 leukemia cells: An in vitro study vol.71, pp.6, 2010, https://doi.org/10.1016/S0011-393X(10)80004-9
  72. Phosphorylation of caspase-9 in the cytosolic fraction of the cerebral cortex of newborn piglets following hypoxia vol.447, pp.1, 2008, https://doi.org/10.1016/j.neulet.2008.09.076
  73. An Entomopathogenic Bacterium, Xenorhabdus nematophila. Causes Hemocyte Apoptosis of Beet Armyworm, Spodoptera exigua vol.8, pp.2, 2005, https://doi.org/10.1016/S1226-8615(08)60086-2
  74. The Role of Signaling Pathways in Cervical Cancer and Molecular Therapeutic Targets vol.45, pp.7, 2014, https://doi.org/10.1016/j.arcmed.2014.10.008
  75. YCA1 participates in the acetic acid induced yeast programmed cell death also in a manner unrelated to its caspase-like activity vol.580, pp.30, 2006, https://doi.org/10.1016/j.febslet.2006.11.050
  76. MicroRNAs and apoptosis: implications in the molecular therapy of human disease vol.36, pp.10, 2009, https://doi.org/10.1111/j.1440-1681.2009.05245.x
  77. Active c-jun N-terminal kinase induces caspase cleavage of tau and additional phosphorylation by GSK-3β is required for tau aggregation vol.27, pp.11, 2008, https://doi.org/10.1111/j.1460-9568.2008.06258.x
  78. Dioscin, a natural steroid saponin, induces apoptosis and DNA damage through reactive oxygen species: A potential new drug for treatment of glioblastoma multiforme vol.59, 2013, https://doi.org/10.1016/j.fct.2013.07.012
  79. Novel quinazoline HMJ-30 induces U-2 OS human osteogenic sarcoma cell apoptosis through induction of oxidative stress and up-regulation of ATM/p53 signaling pathway vol.29, pp.9, 2011, https://doi.org/10.1002/jor.21398
  80. Garcinol inhibits cell growth in hepatocellular carcinoma Hep3B cells through induction of ROS-dependent apoptosis vol.1, pp.3, 2010, https://doi.org/10.1039/c0fo00134a
  81. JNK pathway regulates estradiol-induced apoptosis in hormone-dependent human breast cancer cells vol.105, pp.3, 2007, https://doi.org/10.1007/s10549-006-9451-1
  82. Recombinant Multivalent EMMPRIN Extracellular Domain Induces U937 Human Leukemia Cell Apoptosis by Downregulation of Monocarboxylate Transporter 1 and Activation of Procaspase-9 vol.176, pp.6, 2015, https://doi.org/10.1007/s12010-015-1677-0
  83. Host Gene Profiling of Coxsackievirus B3 H3- and 10A1-infected Mouse Heart vol.36, pp.2, 2006, https://doi.org/10.4167/jbv.2006.36.2.89
  84. Activation of kinin B1 receptor increases the release of metalloproteases-2 and -9 from both estrogen-sensitive and -insensitive breast cancer cells vol.301, pp.1, 2011, https://doi.org/10.1016/j.canlet.2010.09.020
  85. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations vol.292, pp.1, 2007, https://doi.org/10.1152/ajpregu.00327.2006
  86. The JNK MAP kinase pathway contributes to the development of endotoxin-induced diaphragm caspase activation vol.297, pp.3, 2009, https://doi.org/10.1152/ajpregu.90849.2008
  87. , Induces Apoptosis and G1 Phase Arrest in Human Leukemia HL-60 Cells Through the Combinations of Death Receptor-Mediated, Mitochondrial, and Endoplasmic Reticulum Stress-Induced Pathways vol.12, pp.3, 2009, https://doi.org/10.1089/jmf.2008.1103
  88. Anti-inflammatory and apoptosis improving effects of sulfasalazine and Cinnamomi cortex and Bupleuri radix mixture in TNBS-induced colitis mouse model vol.60, pp.3, 2017, https://doi.org/10.3839/jabc.2017.036