• 제목/요약/키워드: Propulsive coefficient

검색결과 13건 처리시간 0.022초

Flapping운동의 최적공력성능을 위한 익형 연구 (A Study of an Airfoil for Optimal Aerodynamic Performance of Flapping Motion)

  • 이정상;김종암;노오현
    • 한국전산유체공학회지
    • /
    • 제8권2호
    • /
    • pp.24-32
    • /
    • 2003
  • In this work, we propose a new idea of flapping airfoil design for optimal aerodynamic performance from detailed computational investigations of flow physics. Generally, flapping motion which is combined with pitching and plunging motion of airfoil, leads to complex flow features such as leading edge separation and vortex street. As it is well known, the mechanism of thrust generation of flapping airfoil is based on inverse Karman-vortex street. This vortex street induces jet-like flow field at the rear region of trailing edge and then generates thrust. The leading edge separation vortex can also play an important role with its aerodynamic performances. The flapping airfoil introduces an alternative propulsive way instead of the current inefficient propulsive system such as a propeller in the low Reynolds number flow. Thrust coefficient and propulsive efficiency are the two major parameters in the design of flapping airfoil as propulsive system. Through numerous computations, we found the specific physical flow phenomenon which governed the aerodynamic characteristics in flapping airfoil. Based on this physical insight, we could come up with a new kind of airfoil of tadpole-shaped and more enhanced aerodynamic performance.

Performance Improvement of Weis-Fogh Type Ship's Propulsion Mechanism Using Spring Type Elastic Wing

  • Ro, Ki-Deok;Cheon, Jung-Hui;Kim, Won-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권1호
    • /
    • pp.52-61
    • /
    • 2009
  • This experiment was conducted in attempt of improving hydrodynamic efficiency of the propulsion mechanism by installing a spring to the wing so that the opening angle of the wing in one stroke can be changed automatically, compared to the existing method of fixed maximum opening angle in Weis-Fogh type ship propulsion mechanism. Average thrust coefficient was almost fixed with all velocity ratio with the prototype, but with the spring type, thrust coefficient increased sharply as velocity ratio increased. Average propulsive efficiency was larger with bigger opening angle in the prototype, but in the spring type, the one with smaller spring coefficient had larger value. In the range over 1.0 in velocity ratio where big thrust can be generated, spring type had more than twice of propulsive efficiency increase compared to the prototype.

소형 모형선을 이용한 실선마력추정에 대한 연구 (A Fundamental Study on the Power Prediction Method of Ship by using the Experiment of Small Model)

  • 하윤진;이영길
    • 대한조선학회논문집
    • /
    • 제51권3호
    • /
    • pp.231-238
    • /
    • 2014
  • In this study, the self-propulsion tests are performed in INHA towing tank. And the effective wake characteristics of the KVLCC2 and the KCS models are compared by the experimental results. The form factor is independent of Reynolds number. To estimate the hydrodynamic performance of a full scale ship, the form factor is determined to consider attendant on Reynolds number. In this research, the power predictions are carried out considering the form factor difference of model and full scale ship. The results of this research could be used as one of the fundamental data to the powering performance prediction.

Comparative study of prediction methods of power increase and propulsive performances in regular head short waves of KVLCC2 using CFD

  • Lee, Cheol-Min;Seo, Jin-Hyeok;Yu, Jin-Won;Choi, Jung-Eun;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.883-898
    • /
    • 2019
  • This paper employs computational tools to predict power increase (or speed loss) and propulsion performances in waves of KVLCC2. Two-phase unsteady Reynolds averaged Navier-Stokes equations have been solved using finite volume method; and a realizable k-ε model has been applied for the turbulent closure. The free-surface is obtained by solving a VOF equation. Sliding mesh method is applied to simulate the flow around an operating propeller. Towing and self-propulsion computations in calm water are carried out to obtain the towing force, propeller rotating speed, thrust and torque at the self-propulsion point. Towing computations in waves are performed to obtain the added resistance. The regular short head waves of λ/LPP = 0.6 with 4 wave steepness of H/λ = 0.007, 0.017, 0.023 and 0.033 are taken into account. Four methods to predict speed-power relationship in waves are discussed; Taylor expansion, direct powering, load variation, resistance and thrust identity methods. In the load variation method, the revised ITTC-78 method based on the 'thrust identity' is utilized to predict propulsive performances in full scale. The propulsion performances in waves including propeller rotating speed, thrust, torque, thrust deduction and wake fraction, propeller advance coefficient, hull, propeller open water, relative rotative and propulsive efficiencies, and delivered power are investigated.

선박에서의 CO2 배출량 저감 방안 연구 (The Study on Reduction Method of CO2 Emission from Ships)

  • 마에다 카즈유키;김영운
    • 수산해양교육연구
    • /
    • 제25권3호
    • /
    • pp.705-715
    • /
    • 2013
  • This Paper presented the reduction methods of $CO_2$ emission from ships during voyage. In order to decrease $CO_2$ emission during voyage the equation was established and conducted the study about the relationship between ship speed, the propulsive efficiency and its $CO_2$ production. The results obtained from the examinations are as follows : 1. $CO_2$ emission from sailing ships can be decreased by reducing specific fuel oil consumption of main diesel engine, coefficient of total resistance and ship speed and also by increasing propeller efficiency. 2. Diesel-electric propulsion system is more effective than diesel-mechanical system to decrease the level of $CO_2$ emission during long voyage. 3. Good condition of ship's hull surface, rudder and propeller's surface can decrease the quantity of fuel oil and $CO_2$ emission by reducing the resistance of ship that can rise the propeller efficiency 4. $CO_2$ emitted from ships can be decreased in a global scale by giving attention to the synthetic transport efficiency.

An estimation method of full scale performance for pulling type podded propellers

  • Park, Hyoung-Gil;Choi, Jung-Kyu;Kim, Hyoung-Tae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.965-980
    • /
    • 2014
  • This paper presents a new estimation method of full scale propulsive performance for the pulling type podded propeller. In order to estimate the drag of pod housing, a drag velocity ratio, which includes the effects of podded propeller loading and Reynolds number, is presented and evaluated through the comparison of model test and numerical analysis. By separating the thrust of propeller blade and the drag of pod housing, extrapolation method of pod housing drag to full scale is deduced, and correction method of propeller blade thrust and torque to full scale is presented. This study utilized the drag coefficient ratio of the pod housing as a measure for expanding it to full scale, but in order to increase the accuracy of performance evaluation, additional study is necessary on the method for the full scale expansion via separating the drag of pod body, strut and fin which consist the pod housing.

항해중 선박의 속도 감소에 관한 연구 (A Study of the Speed Loss of a Ship in a Seaway)

  • 공길영
    • 한국항해학회지
    • /
    • 제23권1호
    • /
    • pp.1-13
    • /
    • 1999
  • Ship system can be divided into four sub-systems: hull, propeller, main engine and operation system which severely affect the characteristics of a ship. In determining ship speed in waves, two factors are considered the involuntary speed loss due to added resistance caused by wind and waves, and the voluntary speed loss by command of operation system to prevent severe ship motions. In this paper, the main function of four sub-system is analyzed for input/output relations and propulsive coefficient and a useful method to predict involuntary speed loss of a ship is presented. Two calculated examples for a high speed container ship and a passenger ship with single screw and diesel engine are given.

  • PDF

Application of Monte Carlo simulations to uncertainty assessment of ship powering prediction by the 1978 ITTC method

  • Seo, Jeonghwa;Park, Jongyeol;Go, Seok Cheon;Rhee, Shin Hyung;Yoo, Jaehoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.292-305
    • /
    • 2021
  • The present study concerns uncertainty assessment of powering prediction from towing tank model tests, suggested by the International Towing Tank Conference (ITTC). The systematic uncertainty of towing tank tests was estimated by allowance of test setup and measurement accuracy of ITTC. The random uncertainty was varied from 0 to 8% of the measurement. Randomly generated inputs of test conditions and measurement data sets under systematic and random uncertainty are used to statistically analyze resistance and propulsive performance parameters at the full scale. The error propagation through an extrapolation procedure is investigated in terms of the sensitivity and coefficient of determination. By the uncertainty assessment, it is found that the uncertainty of resultant powering prediction was smaller than the test uncertainty.

KRISO 3600TEU 컨테이너 모형 주위의 국부유동 계측에 관한 연구 (Experimental Investigation of Local Flow around KRISO 3600TEU Container Ship Model in Towing Tank)

  • 반석호;김우전;김도현
    • 대한조선학회논문집
    • /
    • 제37권3호
    • /
    • pp.1-10
    • /
    • 2000
  • 저항 및 자항등의 유체성능이 뛰어난 선형을 개발하기 위해서는 선체에 작용하는 여러 방향의 힘은 물론 그러한 결과를 발생시키는 선체 주위의 유동 현상에 대한 이해가 필수적이다. 이러한 국부 유동 현상의 규명을 위해 일반 상선 및 특수선 주위의 전체 파형과 속도 분포 등의 국부 유동현상을 관측할 수 있는 종합적인 국부유동 계측 시스템이 개발되었다. 이를 사용하여 KRISO 3600TEU 컨테이너선(KCS) 주위의 국부유동을 계측하였다. 본 자료는 날씬하고 빠른 현대적인 상선의 유동을 이해하는데 매우 귀중한 자료일 뿐만 아니라 계산유체역학 기법을 이용한 계산 결과의 검증을 위해서도 매우 중요한 자료로 평가된다.

  • PDF

통계해석과 이론식을 이용한 저항추진성능 추정 (The Prediction of Ship's Powering Performance Using Statistical Analysis and Theoretical Formulation)

  • 김은찬;홍성완;양승일
    • 대한조선학회지
    • /
    • 제26권4호
    • /
    • pp.14-26
    • /
    • 1989
  • 선박의 추진성능 추정을 위한 통계해석 기법을 연구하고 전산 프로그램을 만들었다. 조파저항계수의 추정식은 조파저항이론을 이용하여 스테이션 별 횡단면적계수의 곱으로 표현되도록 도출해 내었고, 이에 대한 회귀계수는 모형시험 결과를 회귀분석하여 얻었다. 형상계수, 반류비 및 추력감소율의 추정식들은 선체 주요지수, 스테이션 별 횡단면적계수 및 모형시험 결과들을 순순하게 회귀분석하여 얻었다. 통계해석은 여러가지 기술통계와 단계별 회귀분석 기법을 적절하게 이용하여 수행하였다. 추진성능 추정 프로그램은 저항계수, 추진계수, 프로펠러 단독효율 및 각종 척도효과 등을 모두 쉽게 수용할 수 있도록 다양하면서도 간결하게 만들었다.

  • PDF