• Title/Summary/Keyword: Propulsion thruster

Search Result 270, Processing Time 0.028 seconds

Survey on Laser Ablation Micro-thruster for Small Satellites (소형 인공위성을 위한 레이저 삭마 미소 추력기 개발 현황)

  • Park, Young Min;Lee, Bok Jik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.753-756
    • /
    • 2017
  • With the advancement of technology, miniaturization, integration, and weight reduction have become possible, and the existing medium and large satellites have been replaced by small satellites, and the need for a micro thruster has emerged. Laser ablation micro-thruster is a new type thruster using laser ablation. It is emerging as a new candidate in micro-thrusters with wide thrust range and low single impulse thrust. The objective of present study is to introduces the structure, propellant, and research trends of the laser ablation micro-thruster.

  • PDF

Preliminary Study of Micro Cold Gas Thruster

  • Moon, Seonghwan;Oh, Hwayollng;Huh, Hwanil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.617-621
    • /
    • 2004
  • Miniaturization of subsystems including propulsion systems is recent trends in spacecraft technology. Small space vehicle propulsion is not only a technological challenge of a scaling system down, but also a combination of fundamental flow/combustion constraints. In this paper, physical constraints of micronozzle for cold gas micro-thruster are reviewed and discussed. Method to measure small thrust are also described.

  • PDF

Design, Fabrication and Testing of Planar Type of Micro Solid Propellant Thruster (평판형 마이크로 고체 추진제 추력기의 설계, 제작 및 평가)

  • Lee, Jong-Kwang;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.77-84
    • /
    • 2006
  • With the development of micro/nano spacecraft, concepts of micro propulsion are introduced for orbit transfer and drag compensation as well as attitude control. Micro solid propellant thruster has been attention as one of possible solution for micro thruster. In this paper, micro solid propellant thruster is introduced and research on basic components of a micro solid propellant thruster is reported. Micro Pt igniter was fabricated through negative patterning and quantitative effect of geometry was estimated. The characteristic of HTPB/AP solid propellant was investigated to measure the homing velocity. A combustion chamber was fabricated by means of anisotropic etching of photosensitive glass. Finally, micro solid propellant thrusters having various geometries were fabricated and tested.

Structural Analysis of Thruster Heat Shield for Satellite Propulsion System (인공위성 추진시스템용 추력기 열차폐막의 구조해석)

  • Lee, Kyun-Ho;Kim, Jeong-Soo;Han, Cho-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.468-472
    • /
    • 2003
  • MRE-1 dual thruster module(DTM) which will be installed to the present under development KOMPSAT(Korea Multi-Purpose Satellite) can provide reliable and cost-effective means of propulsive control for attitude and maneuvering control system. Thruster heat shield, one of the main components of DTM, is designed to intercept the radiative heat exchange between thruster and satellite during firing. The inside diameter of the current configuration will be decreased a little compared with that of the previous one due to manufacturing method change. Therefore, the possibility of interference between thruster and heat shield due to configuration change is investigated through structural analysis and their results are described in this paper.

  • PDF

Development of Hydrogen Peroxide Thruster adopted Silver Catalyst (은을 촉매로 사용하는 과산화수소 추력기 개발)

  • Lee, Su-Lim;Lee, Choong-Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.67-73
    • /
    • 2007
  • In recent years hydrogen peroxide has become considerably more attractive as a green rocket propellant so a laboratory model of hydrogen peroxide thruster adopted silver catalyst and a test facility has been developed to research a hydrogen peroxide propulsion. The design scheme of thruster and the test data are presented including ignition delay, efficiency of characteristic exhaust velocity. As a result, 95% of efficiency of characteristic exhaust velocity was obtained at steady state operation condition.

A Thermo chemical Study of Arcjet Thruster Flow Field

  • J-R. Shin;S. Oh;Park, J-Y
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.257-261
    • /
    • 2004
  • Computational fluid dynamics analysis was carried out for thermo-chemical flow field in Arcjet thruster with mono-propellant Hydrazine ($N_2$H$_4$) as a working fluid. The theoretical formulation is based on the Reynolds Averaged Navier-Stokes equations for compressible flows with thermal radiation. The electric potential field governed by Maxwell equation is loosely coupled with the fluid dynamics equations through the Ohm heating and Lorentz force. Chemical reactions were assumed being infinitely fast due to the high temperature field inside the arcjet thruster. An equilibrium chemistry module for nitrogen-hydrogen mixture and a thermal radiation module for optically thin media were incorporated with the fluid dynamics code. Thermo-physical process inside the arcjet thruster was understood from the flow field results and the performance prediction shows that the thrust force is increased by amount of 3 times with 0.6KW arc heating.

  • PDF

Current Status and Trends of Research and Development on Electric Thruster, Part I: Overseas (전기추력기 연구개발 현황과 동향, Part I: 해외)

  • Kim, Holak;Kim, Su-Kyum;Won, Su-Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.6
    • /
    • pp.95-108
    • /
    • 2019
  • Electric propulsion is a type of space propulsion with a high specific impulse by accelerating propellant using electrical energy and brings about reduction of the fuel mass and launch costs of satellites so that it is being extensively studied in the world. Electric thrusters are widely used for various purposes from micro satellites to large satellites and from low Earth orbit satellites to spacecraft for exploration. Recently, satellites using full-electric propulsion have been developed, and the number of satellites with electric propulsion is also gradually increasing. In this paper, the current status and trends of research on electric propulsion in the United States, Europe, and Japan will be reported.

Thrust Performance and Plasma Acceleration Process of Hall Thrusters

  • Tahara, Hirokazu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.262-270
    • /
    • 2004
  • Basic experiments were carried out using the THT-IV low-power Hall thruster to examine the influences of magnetic field shape and strength, and acceleration channel length on thruster performance and to establish guidelines for design of high-performance Hall thrusters. Thrusts were measured with varying magnetic field and channel structure. Exhaust plasma diagnostic measurement was also made to evaluate plume divergent angles and voltage utilization efficiencies. Ion current spatial profiles were measured with a Faraday cup, and ion energy distribution functions were estimated from data with a retarding potential analyzer. The thruster was stably operated with a highest performance under an optimum acceleration channel length of 20 mm and an optimum magnetic field with a maximum strength of about 150 Gauss near the channel exit and with some shape considering ion acceleration directions. Accordingly, an optimum magnetic field and channel structure is considered to exist under an operational condition, related to inner physical phenomena of plasma production, ion acceleration and exhaust plasma feature. A new Hall thruster was designed with basic research data of the THT-IV thruster. With the thruster with many considerations, long stable operations were achieved. In all experiments at 200-400 V with 1.5-3 mg/s, the thrust and the specific impulse ranged from 15 to 70 mN and from 1100 to 2300 see, respectively, in a low electric power range of 300~1300 W. The thrust efficiency reached 55 %. Hence, a large map of the thruster performance was successfully made. The thermal characteristics were also examined with data of both measured and calculated temperatures in the thruster body. Thermally safe conditions were achieved with all input powers.

  • PDF

Development of Monopropellant Thruster for Spacecraft Propulsion System (우주추진기관용 단일추진제 추력기 연구개발)

  • Kim, Su-Kyum;Won, Su-Hee
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.295-296
    • /
    • 2012
  • In Korea, study of monopropellant thruster have been started from 1990s by KARI (Korea Aerospace Research Institute). 5N hydrazine thruster that is a first Koreanized hydrazine thruster, have been used as flight model for several satellite. In parallel, in order to retain core technology for monopropellant thruster, catalyst and test facility development have been carried out and successfully completed. On the basis of these technology, KARI is performing development of 1N/200N hydrazine thruster and basic research of green propellant thruster.

  • PDF

Transient Flow Behavior of Propellant with Actuation of Thrust Control Valve in Satellite Propulsion System (위성 추진시스템의 추력제어밸브 작동에 따른 추진제 비정상 유동 특성)

  • Kim, Jeong-Soo;Han, Cho-Young;Choi, Jin-Chul
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.294-298
    • /
    • 2001
  • Satellite propulsion system is employed for orbit transfer, orbit correction, and attitude control. The monopropellant feeding system in the low-earth-orbit satellite blowdowns fuel to the thrust chamber. The thrust produced by the thruster depends on fuel amount flowed into the combustion chamber. If the thruster valve be given on-off signal from on-board commander in the satellite, valve will be opened or closed. When the thrusters fire fuel flows through opened thruster valve. Instantaneous stoppage of flow in according to valve actuation produces transient pressure due to pressure wave. This paper describes transient pressure predictions of the KOMPSAT2 propulsion system resulting from latching valve and thrust control valve operations. The time-dependent set of the fluid mass and momentum equations are calculated by Method of Characteristics (MOC).

  • PDF