• Title/Summary/Keyword: Propulsion Test Facility

Search Result 227, Processing Time 0.022 seconds

High Altitude Simulating Test Facility Design Using Vacuum Pump System (진공펌프 시스템을 이용한 고도모의 시험장치 설계)

  • Hong, Yun Ky;Lee, Jung Min;Na, Jae Jung;Hyun, Dong Ki;Kim, Kyeong Su;Park, Sang Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1160-1164
    • /
    • 2017
  • In this research, a high altitude simulating test facility is designed using vacuum pump system composed of roots pumps and screw pumps. Air flow rate and chamber pressure are 1 kg/s and 2500 Pa, respectively. To design the test facility, experimental tests using certain pump combinations are performed for air injection of the order of hundreds of g/s. From the tests, it is found that 11 roots pumps and 33 screw pumps are required for the considered test facility. Test results are compared with theoretically estimated values. However, intake capacity theoretically estimated is found to be 20 percent larger than test results. This is thought because of higher pressure difference of roots pump for test conditions. Therefore, if more screw pumps are added for the considered pump system, it would be possible to lower the vacuum level of test chamber.

  • PDF

Development of Combustion Test Facility for Liquid Locket Engine (액체로켓엔진 성능 및 냉각특성 연구를 위한 연소시험 장치 개발)

  • Lee Sung-Woong;Kim Dong-Hwan;Kim Young-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.189-192
    • /
    • 2004
  • Test Facility for hot firing test of small size liquid rocket engine has been developed to research the cooing characteristics of kerosene for cylinder part especially. Propellants for the tests are kerosene and liquid oxygen as fuel and oxidizer respectively and they are fed by gaseous nitrogen. The engine components used hot firing test except for cylinder are cooled by tap-water. Valves for supply of propellants and coolants are controlled by pneumatically. System control and data recording are conducted automatically.

  • PDF

Experimental Studies on Scramjet Tested in a Freejet Facility

  • Chang, Xinyu;Chen, Lihong;Gu, Hongbin;Yu, Gong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.34-40
    • /
    • 2004
  • Two different type scramjet models with side-wall compression and top-wall compression inlets have been tested in HPTF (Hypersonic Propulsion Test Facility) under the experimental conditions of Mach number 5.8, total temperature 1700K, total pressure 4.5㎫ and mass flow rate 3.5kg/s. The liquid kerosene was used as main fuel for the scramjets. In order to get fast ignition in the combustor, a small amount of hydrogen was used as a pilot. A strut with alternative tail was employed for increasing the compression ratio and for mixing enhancement in the side-wall compression case. Recessed cavities were used as a flameholder for combustion stability. The combustion efficiency was estimated by one dimensional theory. The uniformity of the facility nozzle flow was verified by a scanning pitot rake. The experimental results showed that the kerosene fuel was successfully ignited and stable combustion was achieved for both scramjet models. However the thrusts were still less than the model drags due to the low combustion efficiencies.

  • PDF

Planning of Integrated Test for Propulsion System of Space Launch Vehicle (우주 발사체 추진기관 종합 시험 계획 수립)

  • Cho, Sang-Yeon;Kim, Sang-Heon;Bershadesky, V.;Oh, Seung-Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.89-95
    • /
    • 2011
  • Korea Space Launch Vehicle II (KSLV-II) planned to launch in 2021 is 3 stage rocket which can inject 1.5 ton satellite in low earth orbit. KSLV-II will adapt the newly developed liquid rocket engines for its propulsion system of each stage. For the evaluation of development level for rocket engine, integrated system test performed in appropriate facility is needed. In this study, test article and major parameters for certifying the propulsion system of KSLV-II were reviewed and optimum test cycle and test duration for satisfying system reliability requirement were illustrated.

Design Method and Preliminary Data Analysis of Subscale Direct-Connect Test Facility for Liquid Ramjet Combustor (I) (액체 램제트 엔진용 소형 연소기 직접 연결식 시험장치의 설계 방법과 시험 데이터 분석 (I))

  • 성홍계;김인식;이규준;김경무;이도형;변종렬;황용석;오석진;한정식
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.59-63
    • /
    • 2003
  • This paper describes the conceptual design method of subscale direct-connect test facility for liquid fuel ramjet combustion study and preliminary analysis of test results. The measured pressure signal represents the successful operation of the test facility. The pressure oscillation in combustion chamber shows the dominant frequency of 190Hz, relatively very low frequency to 1L acoustic mode (1200Hz) based on the length of combustor. It is suspected that there were several driving sources, which are vortex street at backward step of combustor, inlet resonance induced by the long length of unchecked inlet, and/or combustor configuration with optical window.

  • PDF

Design and Analysis of Test Facility for the Experiment of Transpiration Cooling in Hot-flow Condition (고온유동 조건의 분출냉각 실험을 위한 시험장치의 설계 및 해석)

  • Lee, Jungmin;Na, Jaejeong;Kang, Kyoungtaik;Kwon, Minchan;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.46-56
    • /
    • 2013
  • The test facility with hot-air supply system is required to develop transpiration cooling materials and experimentally evaluate its performance. In the study, the facility consists of an arc-plasma generator, plenum chamber suppling cold air, and test section was designed and an internal flow analysis was executed. From CFD results, it was confirmed that the designed plenum chamber thermally safeties and ideally mixes with plasma gas and cold air in the chamber. In addition, validity of design for supplying homogeneous flow to the test section was confirmed by this analysis.

Modeling and Simulation of Combustion Chamber Test Facility Oxidizer Supply System (연소기 연소시험설비 산화제 공급시스템 해석)

  • Chun, Yonggahp;Cho, Namkyung;Han, Yeoung-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.92-97
    • /
    • 2012
  • The propulsion system of space launch vehicle generates thrust by supplying oxidizer and fuel to combustion chamber. KSLV-II 2nd stage engine, currently under development by KARI, is to use liquid oxygen as a oxidizer and JET-A1 as a fuel. The 2nd stage pump-fed engine is mainly composed of combustion chamber, turbo-pump and engine supply system. To develop liquid propulsion engine, the development of combustion chamber must be preceded. For performance validation of the combustion chamber, the designed and manufactured combustion chamber should be tested in combustion chamber test facility (CCTF). The detailed design for the planned CCTF in Naro Space Center was conducted. The oxidizer supply system modeling using AMESim was performed based on the results of the detailed design, and the oxidizer supply characteristics was analyzed in this paper.

Modeling and Simulation of Combustion Chamber Test Facility Oxidizer Supply System (연소기 연소시험설비 산화제 공급시스템 해석)

  • Chung, Yong-Gahp;Cho, Nam-Kyung;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.502-506
    • /
    • 2012
  • The propulsion system of space launch vehicle generates thrust by supplying oxidizer and fuel to combustion chamber. KSLV-II 2nd stage engine, currently under development by KARI, is to use liquid oxygen as a oxidizer and JET-A1 as a fuel. The 2nd stage pump-fed engine is mainly composed of combustion chamber, turbo-pump and engine supply system. To develop liquid propulsion engine, the development of combustion chamber must be preceded. For performance validation of the combustion chamber, the designed and manufactured combustion chamber should be tested in combustion chamber test facility (CCTF). The detailed design for the planned CCTF in Naro Space Center was conducted. The oxidizer supply system modeling using AMESim was performed based on the results of the detailed design, and the oxidizer supply characteristics was analyzed in this paper.

  • PDF

Modeling and Simulation of Combustion Chamber Test Facility Fuel Supply System (연소기 연소시험 설비 연료 공급 시스템 해석)

  • Chung, Yong-Gahp;Lee, Kwang-Jin;Cho, Nam-Kyung;Han, Yeoung-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.87-92
    • /
    • 2012
  • The propulsion system of space launch vehicle generates thrust by supplying oxidizer and fuel to combustion chamber. KSLV-II 2nd stage engine, currently under development by KARI, is to use liquid oxygen as a oxidizer and JET-A1 as a fuel. The 2nd stage pump-fed engine is mainly composed of combustion chamber, turbo-pump and engine supply system. To develop liquid propulsion engine, the development of combustion chamber must be preceded. For performance validation of the combustion chamber, the designed and manufactured combustion chamber should be tested in combustion chamber test facility (CCTF). The detailed design for the planned CCTF in Naro Space Center was conducted. The fuel supply system modeling using AMESim was performed based on the results of the detailed design, and the fuel supply characteristics was analyzed in this paper.

Oxidizer Filling Algorithm of Propulsion System Test Complex(PSTC) for KSLV-II (한국형발사체 추진기관시스템 시험설비(PSTC) 산화제 공급 알고리즘 소개)

  • Lee, Janghwan;Kim, Dongki;Lee, Jungho;Kim, Yongwook;Cho, Kiejoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1180-1183
    • /
    • 2017
  • The Propulsion System Test Complex (PSTC) is constructed for developing KSLV-II in the Naro space center. The KSLV-II uses LOX for oxidizer and oxidizer filling algorithm is developed for supplying oxidizer to KSLV-II. This paper introduces oxidizer filling algorithm.

  • PDF