• 제목/요약/키워드: Propellant Feeding System

Search Result 55, Processing Time 0.025 seconds

Development of a University-Based Simplified H2O2/PE Hybrid Sounding Rocket at KAIST

  • Huh, Jeongmoo;Ahn, Byeonguk;Kim, Youngil;Song, Hyunki;Yoon, Hosung;Kwon, Sejin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.512-521
    • /
    • 2017
  • This paper reports development process of a university-based sounding rocket using simplified hybrid rocket propulsion system for low-altitude flight application. A hybrid propulsion system was tried to be designed with as few components as possible for more economical, simpler and safer propulsion system, which is essential for the small scale sounding rocket operation as a CanSat carrier. Using blow-down feeding system and catalytic ignition as combustion starter, 250 N class hybrid rocket system was composed of three components: a composite tank, valves, and a thruster. With a composite tank filled with both hydrogen peroxide($H_2O_2$) as an oxidizer and nitrogen gas($N_2$) as a pressurant, the feeding pressure was operated in blowdown mode during thruster operation. The $MnO_2/Al_2O_3$ catalyst was fabricated for propellant decomposition, and ground test of propulsion system showed the almost theoretical temperature of decomposed $H_2O_2$ at the catalyst reactor, indicating sufficient catalyst efficiency for propellant decomposition. Auto-ignition of the high density polyethylene(HDPE) fuel grain successfully occurred by the decomposed $H_2O_2$ product without additional installation of any ignition devices. Performance test result was well matched with numerical internal ballistics conducted prior to the experimental propulsion system ground test. A sounding rocket using the developed hybrid rocket was designed, fabricated, flight simulated and launch tested. Six degree-of-freedom trajectory estimation code was developed and the comparison result between expected and experimental trajectory validated the accuracy of the developed trajectory estimation code. The fabricated sounding rocket was successfully launched showing the effectiveness of the simplified hybrid rocket propulsion system.

Flow instability of cryogenic fluid in the downstream of orifice (극저온 유체의 공동 발생에 의한 오리피스 후류의 유동 불안정)

  • Lee, Se-Young;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.695-702
    • /
    • 2008
  • Flow instability in the rocket turbo pump systems can be caused by various elements such as valve, orifice and venturi and etc. The formation of cavitation specially in the propellant feeding system can trigger the mass flow and pressure oscillation due to cyclic formation and depletion of cavitations. If the cryogenic propellant are used, which is very sensitive to temperature variation, the change of propellant properties due to thermodynamic effect should be accounted for in the flow analysis. This study focuses on the formation of cryogenic cavitation adopting MUSHY IDM model suggested by Shyy and coworkers. Also, the flow instability is investigated with developed numerical code in the downstream of orifice flow. To this end, three different orifices are selected and investigated by the numerical calculation.

Characteristics of System Application using Control Valve (제어밸브의 시스템 적용 특성)

  • Lee, Jung-Yeop;Jeong, Tae-Gyu;Han, Sang-Yeop;Kim, Yeong-Mok
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.126-133
    • /
    • 2006
  • This paper deals with technological and design skills for all pneumatical, hydraulical, mechanical and electrical parts related to control valve. Especially, a variety of dynamic characteristics, which are not easily extracted from field tests using control valves, are studied by system-simulation code, AMESim. The simulated results are also compared and examined with actual testing results in terms of physical dynamic characteristics. In addition, this paper contains the simulated system characteristics including dynamic characteristics in component level of valve itself. Based on the results, it is applied to control system of propellant feeding system in liquid-propellant engine of satellite launcher.

  • PDF

Analysis of Dynamic Characteristics and Performance of Solenoid Valve for Pressurization Propellant Tank (추진제탱크 가압용 솔레노이드밸브의 작동특성 분석 및 해석)

  • Jang, Je-Sun;Kim, Byung-Hun;Han, Sang-Yeop
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.725-730
    • /
    • 2011
  • A 2-way solenoid valve regulates to maintain the pressure of ullage volume of propellant tanks when the command is given by control system for the liquid-propellant feeding system of space launch vehicle. The simulation model of solenoid valve for pressurization is designed with AMESim to verify the designs and evaluate the dynamic characteristics and pneumatic behaviors of valve. To validate a valve simulation model, the simulation results of their operating durations of valve by AMESim analysis are compared with the results of experiments. Using the model, we analyze performance of valve; opening/closing pressure, operating time on various design factors; shape of control valve seat, basic valve seat, rate of sealing diameter. This study will serve as one of reference guides to enhance the developmental efficiency of ventilation-relief valves with the various operating conditions, which shall be used in Korea Space Launch Vehicle-II.

  • PDF

Analysis of Dynamic Characteristics and Performance of Solenoid Valve for Pressurization Propellant Tank (추진제탱크 가압용 솔레노이드밸브의 작동특성 분석 및 해석)

  • Jang, Jesun;Kim, Byunghun;Han, Sangyeop
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.128-134
    • /
    • 2013
  • A 2-way solenoid valve regulates to maintain the pressure of ullage volume of propellant tanks when the command is given by control system for the liquid-propellant feeding system of space launch vehicle. The simulation model of solenoid valve for pressurization is designed with AMESim to verify the designs and evaluate the dynamic characteristics and pneumatic behaviors of valve. To improve the accuracy of the model, numerical flow analysis by using FLUNET code. The simulation results of their operating durations of valve by AMESim analysis are matched up with the results of experiments and validate valve model. Using the model, we analyze performance of valve; opening/closing pressure, operating time on various design factors of basic valve and control valve; geometrical size of valve seat, ratio of basic valve and sealing area.

Development of Liquid Propellant Rocket Engine for KSR-III (KSR-III 액체추진제 로켓 엔진 개발)

  • Choi Hwan-Seok;Seol Woo-Seok;Lee Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.3
    • /
    • pp.75-86
    • /
    • 2004
  • KSR-III is the first Korean sounding rocket propelled by a liquid propellant propulsion system and it has been developed over 5 years using purely domestic technologies. The propulsion system of KSR-III is a 13-ton class see-level thrust liquid rocket engine(LRE) which utilizes liquid oxygen and kerosene for its propellants and employed pressurized propellant feeding and ablative cooling system. The problem of combustion instabilities which has brought the most difficulty in the development was resolved by implementation of a baffle. Through the development of KSR-III LRE, meaningful achievements have been made in the core technologies of LRE such as design of injectors and combustion chambers and test, evaluation, and control of combustion instabilities. The acquired technologies will be applied to the development of higher performance LREs necessary for future space development programs such as Korean Small Launch Vehicles(KSLV) In this paper, the development of KRE-III LRE system is described including its design, analyses. performance tests and evaluation.

Design and Development of Vent Relief Valve for Oxidizer Tank (산화제 탱크용 벤트릴리프밸브 설계 및 개발)

  • Koh, Hyeon-Seok;Han, Sang-Yeop
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.854-856
    • /
    • 2011
  • A vent relief valve for oxidizer tank has been designed for liquid propellant feeding system of the space launch vehicle. The vent relief valve ensures oxidizer tank ventilation during filling and its protection from overpressure after filling. Tank ventilation during filling is ensured by vent valve and tank protection is ensured by combined operation of relief valve and vent valve. Numerical analysis predicted that pneumatic behavior and dynamic characteristics met the valve requirements. After manufacturing the prototype model, we have been conducting the tests to evaluate the performance of the vent relief valve.

  • PDF

Numerical Flow Analysis for Anti-Vortex Device (AVD) in Oxidizer Tank (산화제 탱크의 와류방지장치 유동해석)

  • Jang, Je-Sun;Han, Sang-Yeop;Kil, Gyoung-Sub;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.168-175
    • /
    • 2010
  • During feeding oxidizer to the engine, vortices are occurred at lower dome of oxidizer tank inside by various working environments and external forces for liquid propellant feeding system of space launch vehicle. To eliminate the vortices or swirls Anti-Vortex Devices(AVD) shall be installed at inside lower oxidizer tank. Using the numerical analysis, we have confirmed the performance of AVD and analyzed the mass flow rate by feeding time and magnitudes of swirls on the free surface of oxidizer or exit surface according to the AVD number and length. Then we could derive the optimal design of the AVD number and length.

Study on the Development Trend of Pressurization System for Propulsion System of Launch Vehicle (발사체 추진기관 가압시스템 개발 사례 연구)

  • Shin, Dong-Sun;Kim, Byung-Hun;Han, Sang-Yeop
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.721-724
    • /
    • 2011
  • A system to pressurize propellants stored in propellant tanks is necessary to feed liquid-propellants into combustion devices at the required pressure and flowrate without having cavitation in turbo-pumps. A pressurization system can be categorized into pre-pressurization stage and main-pressurization stage. This report is regarding to a main-pressurization system. Pressurization methods for propellant tanks are divided into pressurant gas generating method and pressurant gas feeding method. One of pressurant gas generating methods uses the vaporized oxygen gas from cryogenic liquid oxygen and non-flammable gas. In this report, both advantages and disadvantages for pressurization methods and types of pressurization systems are compared. Especially the characteristics and principle of pressurization system using impulsive control strategy applied in launch vehicles are introduced. Additionally the structure, schematics, and specifications of heat exchanger, which is one of main units in pressurization system are also discussed. This paper can be utilized to generate the conceptual requirements and to design preliminary configuration of pressurization system during the development of launch vehicle.

  • PDF

LOX conditioning을 위한 재순환배관의 성능해석 및 설계인자 파악

  • Kwon, Oh-Sung;Cho, Nam-Kyung;Chung, Yong-Gab;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.196-202
    • /
    • 2005
  • In cryogenic feeding system of turbo pump fed liquid-propulsion rocket, rise of cryogenic propellant temperature can bring into geysering in pipe or cavitation in turbo pump. In this paper, performance analysis of recirculation line which is one of the method to inhibit these phenomenon is carried out based on the configuration of KSLV-I 1st stage LOX feeding system, and parametric study to find design parameter. Diameter and re-entrance height, initial LOX temperature, ullage pressure, and natural convection heat transfer coefficient are varied to see the effects on performance. Additional He is injected into recirculation line to promote LOX recirculation. 1-dimensional analysis using network-solver, SINDA/FLUINT is carried out.

  • PDF