• 제목/요약/키워드: Propagation Direction

검색결과 553건 처리시간 0.027초

Effects of plasmaspheric density structure on the characteristics of geomagnetic ULF pulsations

  • 최지원;이동훈;김관혁;이은상
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.116.2-116.2
    • /
    • 2012
  • The structure of plasmasphere plays an important role in determining properties of geomagnetic ULF pulsations such as Pi 2 pulsations and field line resonances (FLRs) in the Earth's magnetosphere. We have performed a 3-D MHD wave simulation to investigate the generation and propagation of ULF waves in dipole geometry. Various 3-D density structures are assumed, which include a relatively sharp density gradient and gradually less slopes at the plasmapause. The former condition can refer to the plasmasphere from local midnight to dawn, whereas the latter represents the region near noon to dusk where it bulges out. We show how Pi 2 pulsations and FLRs differentially appear at both multi-point satellite locations and ground stations for different local times. Our results suggest that 1) the local radial density structure significantly affects the peak frequencies for Pi 2 oscillations, while the polarization changes remain similar in the radial direction, and 2) the radial location of strong FLRs varies for different density profiles. It is also suggested how multi satellite measurements and ground-based observations can confirm this differential feature in space.

  • PDF

금속 접지 판이 없는 이중대역 메타 물질 흡수체 (Dual-Band Metamaterial Absorber without Metallic Back-Plate)

  • 이홍민;이형섭
    • 한국전자파학회논문지
    • /
    • 제23권7호
    • /
    • pp.840-843
    • /
    • 2012
  • 본 논문에서는 SRR의 자계 공진을 이용한 새로운 이중 대역 메타 물질 구조의 흡수체를 제안하였다. 제안된 메타 물질 구조의 단위 셀은 두 개의 OCSRR과 SRR의 구조로 이루어 졌다. 연구에서는 금속 접지 면을 갖지 않는 구조로 설계하기 위하여 평면 배열된 SRR들은 입사 전자파의 진행 방향과 평행하게 놓여졌다. FR-4 기판 양면에 총 $39{\times}39$개의 단위 셀들의 배열로 이루어진 흡수체 시작품을 제작하고 측정하였다. 제안된 금속 접지판이 없는 구조는 마이크로파 주파수대 흡수체로 응용이 가능함을 보였다.

나노 임프린트 공정에 의한 광자결정 도파로 제조공정 (Nano imprinting lithography fabrication for photonic crystal waveguides)

  • 정은택;김창석;정명영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.498-501
    • /
    • 2005
  • Photonic crystals, periodic structure with a high refractive index contrast modulation, have recently become very interesting platform for manipulation of light. The existence of a photonic bandgap, a frequency range in which propagation of light is prevented in all direction, makes photonic crystal very useful in application where spatial localization of light is required for waveguide, beam splitter, and cavity. But fabrication of 3 dimensional photonic crystal is still difficult process. a concept that has recently attracted a lot of attention is a planar photonic crystal based on a dielectric membrane, suspended in the air, and perforated with 2 dimensional lattice of hole. We show that the polymer slabs suspended in air with triangular lattice of air hole can exhibit the in-plane photonic bandgap for TE-like modes. The fabrication of Si master with pillar structure using hot embossing process was investigated for 2 dimensional low-index-contrast photonic crystal waveguide.

  • PDF

Development of Link Cost Function using Neural Network Concept in Sensor Network

  • Lim, Yu-Jin;Kang, Sang-Gil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권1호
    • /
    • pp.141-156
    • /
    • 2011
  • In this paper we develop a link cost function for data delivery in sensor network. Usually most conventional methods determine the optimal coefficients in the cost function without considering the surrounding environment of the node such as the wireless propagation environment or the topological environment. Due to this reason, there are limitations to improve the quality of data delivery such as data delivery ratio and delay of data delivery. To solve this problem, we derive a new cost function using the concept of Partially Connected Neural Network (PCNN) which is modeled according to the input types whether inputs are correlated or uncorrelated. The correlated inputs are connected to the hidden layer of the PCNN in a coupled fashion but the uncoupled inputs are in an uncoupled fashion. We also propose the training technique for finding an optimal weight vector in the link cost function. The link cost function is trained to the direction that the packet transmission success ratio of each node maximizes. In the experimental section, we show that our method outperforms other conventional methods in terms of the quality of data delivery and the energy efficiency.

A STUDY on FOREST FIRE SPREADING ALGORITHM with CALCULATED WIND DISTRIBUTION

  • Song, J.H.;Kim, E.S.;Lim, H.J.;Kim, H.;Kim, H.S.;Lee, S.Y
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 1997년도 International Symposium on Fire Science and Technology
    • /
    • pp.305-310
    • /
    • 1997
  • There are many parameters in prediction of forest fire spread. The variables such as fuel moisture, fuel loading, wind velocity, wind direction, relative humidity, slope, and solar aspect have important effects on fire. Particularly, wind and slope factors are considered to be the most important parameters in propagation of forest fire. Generally, slope effect cause different wind distribution in mountain area. However, this effect is disregarded in complex geometry. In this paper, wind is estimated by applying computational fluid dynamics to the forest geometry. Wind velocity data is obtained by using CFD code with Newtonian model and slope is calculated with geometrical data. These data are applied fer 2-dimentional forest fire spreading algorithm with Korean ROS(Rate Of Spread). Finally, the comparison between the simulation and the real forest fire is made. The algorithm spread of forest fire will help fire fighter to get the basic data far fire suppression and the prediction to behavior of forest fire.

  • PDF

THERMAL AND SMOKE MEASUREMENTS OF VEHICLE FIRES Establishing practical large-scale experiment for vehicle fires

  • Kim, Jeong-Hun;Kim, Hong;Lee, Bog-Young;Lee, Chang-Seop
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 1997년도 International Symposium on Fire Science and Technology
    • /
    • pp.335-342
    • /
    • 1997
  • Experiments were conducted to evaluate the hazard risks of vehicle fires. Sensors were strategically placed in passenger cars to determine the temperature, propagation rate and direction of flame. The life safety hazard evaluations such as smoke and gas analysis were included. An important ignition position was performed in the engine compartment. The effects of different ignition positions and the opening of door glasses were also reviewed. The experimental results indicate that the maximum temperature when a vehicle burns varies commonly from 90$0^{\circ}C$ -100$0^{\circ}C$. The flame reaches in the face of a driver about 6-7minutes and the windshield glass breaks about 10 minutes after the ignition in the engine compartment of vehicle. And the smoke and gas concentrations reached the limit of human inhalation after 13-14 minutes. Especially the concentrations of carbon monoxide exceeded the TWA(50 ppm) during short time after ignition in cases of all experiments.

  • PDF

3점 굴곡 실험에서 하중 속도 변화에 따른 단결정 실리콘 칩의 파괴강도 측정 (Fracture Strength Measurement of Single Crystal Silicon Chips as a Function of Loading Rate during 3-Point Bending Test)

  • 이동기;이성민
    • 대한금속재료학회지
    • /
    • 제50권2호
    • /
    • pp.146-151
    • /
    • 2012
  • The present article shows how the fracture strength of single crystal silicon chips, which are generally used as semiconductor devices, is influenced by loading rate variation during a 3-point bending test. It was found that the fracture strength of the silicon chips slightly increases up to 4% with increasing loading rate for loading rates lower than 20 mm/min. Meanwhile, the fracture strength of the chips hardly increases with increase of loading rate to levels higher than 40 mm/min. However, there was an abrupt transition in the fracture strength within a loading rate range of 20 mm/min to 40 mm/min. This work explains through microscopic examination of the fracture surface of all test chips that such a big transition is related to the deflection of crack propagation direction from the (011) [${\bar{1}}00$] system to the (111) [${\bar{2}}11$] system in a particular loading rate (i.e. from 20 mm/min to 40 mm/min).

MODELING OF A BUOYANCY-DRIVEN FLOW EXPERIMENT IN PRESSURIZED WATER REACTORS USING CFD-METHODS

  • Hohne, Thomas;Kliem, Soren
    • Nuclear Engineering and Technology
    • /
    • 제39권4호
    • /
    • pp.327-336
    • /
    • 2007
  • The influence of density differences on the mixing of the primary loop inventory and the Emergency Core Cooling (ECC) water in the downcomer of a Pressurised Water Reactor (PWR) was analyzed at the ROssendorf COolant Mixing (ROCOM) test facility. ROCOM is a 1:5 scaled model of a German PWR, and has been designed for coolant mixing studies. It is equipped with advanced instrumentation, which delivers high-resolution information for temperature or boron concentration fields. This paper presents a ROCOM experiment in which water with higher density was injected into a cold leg of the reactor model. Wire-mesh sensors measuring the tracer concentration were installed in the cold leg and upper and lower part of the downcomer. The experiment was run with 5% of the design flow rate in one loop and 10% density difference between the ECC and loop water especially for the validation of the Computational Fluid Dynamics (CFD) software ANSYS CFX. A mesh with two million control volumes was used for the calculations. The effects of turbulence on the mean flow were modelled with a Reynolds stress turbulence model. The results of the experiment and of the numerical calculations show that mixing is dominated by buoyancy effects: At higher mass flow rates (close to nominal conditions) the injected slug propagates in the circumferential direction around the core barrel. Buoyancy effects reduce this circumferential propagation. Therefore, density effects play an important role during natural convection with ECC injection in PWRs. ANSYS CFX was able to predict the observed flow patterns and mixing phenomena quite well.

파장분할다중화방식 전송로의 In-service 감시를 위한 새로운 감시시스템의 구현 및 성능평가 (Implemeention and performance measurement of a novel in-service supervisory system for WDM transmission link)

  • 김필한;윤호성;박남규;서재은;정기태;유기원;이규행
    • 한국광학회지
    • /
    • 제12권2호
    • /
    • pp.129-134
    • /
    • 2001
  • 본 논문에서는 일반적인 OTDR 기술로 WDM 전송시스템의 감시를 수행하는 새로운 방법을 제안하였다. 제안된 감시 방법은 전송로에 포함된 EDFA의 구조를 광회전기(optical circulator)와 FBG(Fiber Bragg Grating)를 이용하여 OTDR 광펄스의 파장에서만 양방향 전송이 가능하도록 변경하고, 전송 신호의 역방향으로 OTDR 광펄스를 삽입함으로써 EDFA의 교차이득변조에 의한 신호왜곡을 분산시켜 신호전송과 전송로 감시를 동시에 수행하는 것이다. 이 감시 방법의 타당성을 검증하기 위해 제안된 구조로 변경된 EDFA가 포함된 320km 길이의 8 채널 WDM 광전송 시스템을 구축하고 신호전송과 동시에 전송로 감시를 수행한 결과를 보였으며, 이때 전송로 감시로 인한 전송 신호 채널의 power penalty를 BERT로 측정하여 그 값이 0.3dB이하로 매우 작음을 보였다.

  • PDF

Theoretical Investigation of the Generation of Broad Spectrum Second Harmonics in Pna21-Ba3Mg3(BO3)3F3 Crystals

  • Kim, Ilhwan;Lee, Donghwa;Lee, Kwang Jo
    • Current Optics and Photonics
    • /
    • 제5권4호
    • /
    • pp.458-465
    • /
    • 2021
  • Borate nonlinear optical crystals have been used as frequency conversion devices in many fields due to their unique transparency and nonlinearity from ultraviolet to visible spectral range. In this study, we theoretically and numerically investigate the properties of broadband second harmonic generation (SHG) in the recently reported Pna21-Ba3Mg3(BO3)3F3 (BMBF) crystal. The technique is based on the simultaneous achievement of birefringence phase matching and group velocity matching between interacting waves. We discussed all factors required for broadband SHG in the BMBF in terms of two types of phase matching and group velocity matching conditions, the beam propagation direction and the corresponding effective nonlinearity and spatial walk-off, and the spectral responses. The results show that bandwidths calculated in the broadband SHG scheme are 220.90 nm (for Type I) and 165.85 nm (for Type II) in full-width-half-maximum (FWHM). The central wavelength in each case is 2047.76 nm for Type I and 1828.66 nm for Type II at room temperature. The results were compared with the non-broadband scheme at the telecom C-band.