DOI QR코드

DOI QR Code

3점 굴곡 실험에서 하중 속도 변화에 따른 단결정 실리콘 칩의 파괴강도 측정

Fracture Strength Measurement of Single Crystal Silicon Chips as a Function of Loading Rate during 3-Point Bending Test

  • 이동기 (인천대학교 신소재공학과) ;
  • 이성민 (인천대학교 신소재공학과)
  • Lee, Dong-Ki (Department of Materials Science & Engineering, University of Incheon) ;
  • Lee, Seong-Min (Department of Materials Science & Engineering, University of Incheon)
  • 투고 : 2011.11.01
  • 발행 : 2012.02.25

초록

The present article shows how the fracture strength of single crystal silicon chips, which are generally used as semiconductor devices, is influenced by loading rate variation during a 3-point bending test. It was found that the fracture strength of the silicon chips slightly increases up to 4% with increasing loading rate for loading rates lower than 20 mm/min. Meanwhile, the fracture strength of the chips hardly increases with increase of loading rate to levels higher than 40 mm/min. However, there was an abrupt transition in the fracture strength within a loading rate range of 20 mm/min to 40 mm/min. This work explains through microscopic examination of the fracture surface of all test chips that such a big transition is related to the deflection of crack propagation direction from the (011) [${\bar{1}}00$] system to the (111) [${\bar{2}}11$] system in a particular loading rate (i.e. from 20 mm/min to 40 mm/min).

키워드

과제정보

연구 과제 주관 기관 : 인천대학교

참고문헌

  1. S. M. Lee, J. Kor. Inst. Met. & Mater. 43, 62 (2005).
  2. S. M. Lee, S. M. Sim, Y. W. Chung, Y. K. Jang, and H. K. Cho, Jpn. J. Appl. Phys. 36, 3374 (1997). https://doi.org/10.1143/JJAP.36.3374
  3. Z. J. Pei, Mach. Tool. Manuf. 42, 385 (2002). https://doi.org/10.1016/S0890-6955(01)00122-5
  4. S. M. Lee, Sur. Rev. and Lett. 17, 323 (2010). https://doi.org/10.1142/S0218625X10013916
  5. D. Broek, Elementary Engineering Fracture Mechanics, p.170, Kluwer Academic (1983).
  6. J. H. Lau, Thermal Stress and Strain in Microelectronics Packaging, p.422, Van Nostrand Reinhold (1993).
  7. Z. J. Pei, Graham R. Fisher, and J. Liu, Int. J. Mach. Tool. Manu. 48, 1297 (2008). https://doi.org/10.1016/j.ijmachtools.2008.05.009
  8. Z. J. Pei, S. R. Billingsley, and S. Miura, Int. J. Mach. Tool. Manu. 39, 1103 (1999). https://doi.org/10.1016/S0890-6955(98)00079-0
  9. R. Perez and P. Gumbsch, Phys. Rev. Lett. 84, 5347 (2000). https://doi.org/10.1103/PhysRevLett.84.5347
  10. R. Perez and P. Gumbsch, Acta Mater. 48, 4517 (2000). https://doi.org/10.1016/S1359-6454(00)00238-X
  11. D. K. Lee, T. G. Lee, and S. M. Lee, Korean J. Met. Mater. 49, 726 (2011).
  12. G. A. Wolff, J. Electrochem. Soc. 110, 524 (1963). https://doi.org/10.1149/1.2425806
  13. D. Sherman and I. Be'ery, J. Mech. Phys. Solids 52, 1743 (2004). https://doi.org/10.1016/j.jmps.2004.02.004
  14. D. Sherman and I. Be'ery, Scr. Mater. 49, 551 (2003). https://doi.org/10.1016/S1359-6462(03)00354-3
  15. D. Sherman, J. Mech. Phys. Solids 53, 2742 (2005). https://doi.org/10.1016/j.jmps.2005.07.001