• Title/Summary/Keyword: Promising Technology

Search Result 3,151, Processing Time 0.035 seconds

Lithoautotrophic Nitrogen Removal from Ammonium-rich Wastewater in Aerobic Upflow Sludge Bed(AUSB) Reactor (호기성 상향류 슬러지상 반응조를 이용한 고농도 암모늄 함유폐수의 독립영양 질소제거)

  • Ahn, Young-Ho;Choi, Hoon-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.8
    • /
    • pp.852-859
    • /
    • 2006
  • The novel microbial process such as Anammox(anaerobic ammonium oxidation) and Canon(completely autotrophic nitrogen removal over nitrite) processes is promising biotechnology to remove nitrogen from ammonium-rich wastewater like anaerobic sludge digester liquid. In this research, a new Canon-type nitrogen removal process adopting upflow granular sludge bed type configuration was investigated on its feasibility and process performance, using synthetic wastewater and sludge digester liquids. Air as an oxygen source was provided in an external aeration chamber with flow recirculation. In the first experiment using the synthetic wastewater(up to 110 mg $NH_4$-N $L^{-1}$), the ammonium removal was about 95%(92% for T-N) at effective hydraulic retention time(HRT) for 3.8 days. In the second experiment using the sludge digester liquids($438{\pm}26$ mg $NH_4$-N $L^{-1}$), the total nitrogen removal was $94{\pm}1.7%$ at HRT for 5.4 days and $76{\pm}1.5%$ at HRT for 3.8 days, respectively. Little nitrite and nitrate were observed in the effluent of both experiments. The process revealed quite a lower oxygen($0.29{\sim}0.59$ g $O_2$ $g^{-1}N$) and less alkalinity($3.1{\sim}3.4$ g $CaCO_3$ $g^{-1}N$) consumption as compared to other new technology in microbial nitrogen removal. The process also offers the economical compact reactor configuration with excellent biomass retention, resulting in lower cost for investment and maintenance.

Enhanced ${\varepsilon}$-Poly-$_L$-lysine Production from Streptomyces ahygroscopicus by a Combination of Cell Immobilization and In Situ Adsorption

  • Liu, Shengrong;Wu, Qingping;Zhang, Jumei;Mo, Shuping;Yang, Xiaojuan;Xiao, Chun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1218-1223
    • /
    • 2012
  • ${\varepsilon}$-Poly-$_L$-lysine (${\varepsilon}$-PL), produced by Streptomyces or Kitasatospora strains, is a homo-poly-amino acid of $_L$-lysine, which is used as a safe food preservative. The present study investigates the combined use of cell immobilization and in situ adsorption (ISA) to produce ${\varepsilon}$-PL in shaken flasks. Loofah sponge-immobilized Streptomyces ahygroscopicus GIM8 produced slightly more ${\varepsilon}$-PL than those immobilized on synthetic sponge, and sugarcane bagasse. Moreover, loofah sponge supported the maximum biomass. Hence, loofah sponge was chosen for cell immobilization. Meanwhile, the ion-exchange resin D152 was employed for ISA. The loofah sponge-immobilized cells produced $0.54{\pm}0.1g/l$ ${\varepsilon}$-PL, which significantly increased to $3.64{\pm}0.32g/l$ after combining with ISA through the addition of resin bags. The free cells with ISA using the dispersed resin yielded $2.73{\pm}0.26g/l$ of ${\varepsilon}$-PL, an increase from $0.82{\pm}0.08g/l$. These data illustrate that the proposed combination method improved production most significantly compared with either immobilization or ISA only. Moreover, the immobilized cells could be repeatedly used and an ${\varepsilon}$-PL total amount of $8.05{\pm}0.84g/l$ was obtained. The proposed combination method offers promising perspectives for ${\varepsilon}$-PL production.

Combined Skin Moisturization of Liposomal Serine Incorporated in Hydrogels Prepared with Carbopol ETD 2020, Rhesperse RM 100 and Hyaluronic Acid

  • Kim, Hyeongmin;Ro, Jieun;Barua, Sonia;Hwang, Deuk Sun;Na, Seon-Jeong;Lee, Ho Sung;Jeong, Ji Hoon;Woo, Seulki;Kim, Hyewon;Hong, Bomi;Yun, Gyiae;Kim, Joong-Hark;Yoon, Young-Ho;Park, Myung-Gyu;Kim, Jia;Sohn, Uy Dong;Lee, Jaehwi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.6
    • /
    • pp.543-547
    • /
    • 2015
  • We investigated the combined moisturizing effect of liposomal serine and a cosmeceutical base selected in this study. Serine is a major amino acid consisting of natural moisturizing factors and keratin, and the hydroxyl group of serine can actively interact with water molecules. Therefore, we hypothesized that serine efficiently delivered to the stratum corneum (SC) of the skin would enhance the moisturizing capability of the skin. We prepared four different cosmeceutical bases (hydrogel, oil-in-water (O/W) essence, O/W cream, and water-in-oil (W/O) cream); their moisturizing abilities were then assessed using a $Corneometer^{(R)}$. The hydrogel was selected as the optimum base for skin moisturization based on the area under the moisture content change-time curves (AUMCC) values used as a parameter for the water hold capacity of the skin. Liposomal serine prepared by a reverse-phase evaporation method was then incorporated in the hydrogel. The liposomal serine-incorporated hydrogel (serine level=1%) showed an approximately 1.62~1.77 times greater moisturizing effect on the skin than those of hydrogel, hydrogel with serine (1%), and hydrogel with blank liposome. However, the AUMCC values were not dependent on the level of serine in liposomal serine-loaded hydrogels. Together, the delivery of serine to the SC of the skin is a promising strategy for moisturizing the skin. This study is expected to be an important step in developing highly effective moisturizing cosmeceutical products.

Effect of Gamma Irradiation on Wood Chip Saccharification Pretreated with NaOH (NaOH를 이용한 우드칩의 당화 전처리에 대한 감마선 조사 영향 연구)

  • Kim, Su-mi;Choi, Jong-il;Joe, Min-Ho;Kim, Jong-deog
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.431-435
    • /
    • 2016
  • The aim of this study was to investigate the effect of gamma irradiation on the pretreatment of wood chips with NaOH solution. The degree of saccharification was quantified by measuring reducing sugar and glucose concentrations after enzymatic hydrolysis. After pretreatment with 10 g/L NaOH, the wood chips were irradiated at the doses of 0, 50, 100, and 200 kGy, respectively. Among the irradiated samples, wood chips irradiated at the dose of 200 kGy had the highest reducing sugar concentration of 12.2 g/L. Also, to define the effect of irradiation before pretreatment, the wood chips were first gamma-irradiated and then pretreated with NaOH. When the NaOH treatment was conducted after irradiation at 200 kGy, the reducing sugar content was further increased to 13.4 g/L and glucose content of the wood chip was as high as 7.9 g/L. These results suggest that gamma irradiation may be the promising method for pretreatment of cellulose biomass.

Policy Options for Diaper Recycling to Foster Effective Citizens' Participation - Based on Collection Pilot Test of Soiled Diaper in Nowon-gu - (효과적인 시민참여를 위한 기저귀 재활용 정책방안 - 노원구의 사용 후 기저귀 수거 시범사업 결과를 중심으로 -)

  • Kim, Kyung Shin
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.16-26
    • /
    • 2015
  • This study aims to suggest possible policy options for collection of post-consumer diapers as a sustainable prerequisite to implementation of public recycling system with the desktop monitoring results and analysis of collection cost involved. By conducting a diaper collection pilot test on daycare centers and households in the Seoul Nowon-gu, this study revealed that the odor issues did not stand out as an important hindering factor and that the collection rate was the largest contributing factor regarding collection costs. The exploratory cost analysis result shows that the implemented recycling system must guarantee collection rate over 50% via twice-a-week collection frequency, to be comparable or even superior to the current food waste collection cost. Also the pilot demonstration test showed that the final collection rate can be achieved as much as over 50%. The promising data thus obtained cost economically viable future diaper recycling system implementation in the entire Seoul metropolis and adjacent areas of dense population. With the concomitant development of recycling technology and related infrastructure for systematic collection of diaper waste, it makes our society much more sustainable.

Characteristics of selective area growth of GaN/AlGaN double heterostructure grown by hydride vapor phase epitaxy on r-plane sapphire substrate (HVPE 방법에 의해 r-plane 사파이어 기판 위의 선택 성장된 GaN/AlGaN 이종 접합구조의 특성)

  • Hong, S.H.;Jeon, H.S.;Han, Y.H.;Kim, E.J.;Lee, A.R.;Kim, K.H.;Hwang, S.L.;Ha, H.;Ahn, H.S.;Yang, M.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.1
    • /
    • pp.6-10
    • /
    • 2009
  • In this paper, a selective area growth (SAG) of a GaN/AlGaN double heterostructure (DH) has been performed on r-plane sapphire substrate by using the mixed-source hydride vapor phase epitaxy (HVPE) with multi-sliding boat system. The SAG-GaN/AlGaN DH consists of GaN buffer layer, Te-doped AlGaN n-cladding layer, GaN active layer, Mg-doped AlGaN p-cladding layer, and Mg-doped GaN p-capping layer. The electroluminescence (EL) characteristics show an emission peak of wavelength, 439 nm with a full width at half maximum (FWHM) of approximately 0.64 eV at 20 mA. The I-V measurements show that the turn-on voltage of the SAG-GaN/AlGaN DH is 3.4 V at room temperature. We found that the mixed-source HVPE method with a multi-sliding boat system was one of promising growth methods for III-Nitride LEDs.

Cost Analysis of Modified Asphalts using a Performance Based Fracture Criterion (공용성에 근거한 파괴기준을 이용한 개질 아스팔트 포장의 비용 효과 분석)

  • Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.49-56
    • /
    • 2005
  • The effect of modified asphalts is evaluated by simple comparison of a single parameter (i.e., tensile strength, stiffness, etc.) between modified asphalt mixture and unmodified mixture. The use of a single parameter to evaluate the effect of modified asphalt must be questioned. Rather, a single unified framework that accounts for changes in key mixture properties is needed to effectively evaluate the modified asphalt mixtures. This study used a new performance-based fracture parameter as a single unified framework, the Energy Ratio (ER), for quantifying the effect of modified asphalts oil the fracture resistance of mixtures. The Energy Ratio was then used as a performance criterion for calculating the construction cost of two modified asphalt pavements (SBS and Crumb Rubber) and unmodified asphalt pavement. The results showed that the Energy Ratio of SBS modified asphalt was higher than those of crumb rubber and unmodified asphalt. Cost analyses indicated that the construction cost of the AC layer would be reduced by up to 24% by SBS modification. Based on the results, the Energy Ratio is capable of evaluating the effect of modified mixtures, and may form the basis of a promising fracture criterion for performance-based thickness design in asphalt pavements.

  • PDF

On-stream Activity and Surface Chemical Structure of CoO2/TiO2 Catalysts for Continuous Wet TCE Oxidation (습식 TCE 분해반응에서 CoO2/TiO2 촉매의 반응활성 및 표면화학적 구조)

  • Kim Moon Hyeon;Choo Kwang-Ho
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.221-230
    • /
    • 2005
  • Catalytic wet oxidation of trichloroethylene (TCE) in water has been conducted using $TiO_2-supported$ cobalt oxides at $36^{\circ}C$ with a weight hourly space velocity of $7,500\;h^{-1}.\;5\%\;CoO_x/TiO_2$, prepared by using an incipient wetness technique, might be the most promising catalyst for the wet oxidation although it exhibited a transient behavior in time on-stream activity. Not only could the bare support be inactive for the wet decomposition reaction, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. XPS spectra of both fresh and used Co surfaces gave different surface spectral features for each $CoO_x,\;Co\;2P_{3/2}$ binding energy for Co species in the fresh catalyst appeared at 781.3 eV, which is very similar to the chemical states of $CoTiO_x$ such as $CO_2TiO_4\;and\;CoTiO_3$. The used catalyst exhibited a 780.3-eV main peak with a satellite structure at 795.8 eV. Based on XPS spectra of reference Co compound, the TCE-exposed Co surfaces could be assigned to be in the form of mainly $Co_3O_4$. XRD patterns for $5\%\;CoO_x/TiO_2$ catalyst indicated that the phase structure of Co species in the catalyst even before reaction is quite comparable to the diffraction lines of external $Co_3O_4$ standard. A model structure of $CoO_x$ present predominantly on titania surfaces would be $Co_3O_4$, encapsulated in thin-film $CoTiO_x$ species consisting of $Co_2TiO_4$ and $CoTiO_3$, which may be active for the decomposition of TCE in a flow of water.

Development of Extracts of Lycii folium Having High Antioxidant Activity (항산화 활성이 높은 구기엽 추출물 제조)

  • Kim, Tae-Su;Park, Won-Jeong;Ko, Sang-Beom;Kang, Myung-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.10
    • /
    • pp.1318-1322
    • /
    • 2008
  • The aim of this study was to analyze the antioxidant properties of Lycii folium extracts prepared from different solvents. Lycii folium were extracted with water, 80% ethanol (80% EtOH), 80% methanol (80% MeOH) and 100% methanol (100% MeOH) in water bath at $40^{\circ}C$. The antioxidant activity of the extracts was evaluated using DPPH, hydroxyl and hydrogen radical scavenging activities, and SOD-liked activity. Total phenolic acid contents were 1.085 mg/mL in 100% MeOH, 1.382 mg/mL in 80% EtOH, 1.420 mg/mL in 80% MeOH and 1.084 mg/mL in water. DPPH radical scavenging activity of the extracts were 65.60% in 80% EtOH, 56.80% in 80% MeOH, 83.85% in 100% MeOH and 54.65% in water. Hydroxyl radical scavenging activities were 66.65% in 100% MeOH, 73.13% in 80% ethanol, 73.58% in 80% MeOH and 70.73% in water. Hydrogen radical scavenging activity of the extracts prepared from Lycii folium were 11.70% in 100% MeOH, 33.73% in 80% EtOH, 35.40% in 80% M eOH and 23.86% in water. SOD-liked activity of the extracts prepared from Lycii folium was 71.58% in 100% MeOH, 74.29% in 80% EtOH, 88.46% in 80% MeOH and 67.47% in water. Our result showed that Lycii folium extracts prepared from 80% methanol were found to be promising biomaterials with antioxidant effects.

ZnO nanostructures for e-paper and field emission display applications

  • Sun, X.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.993-994
    • /
    • 2008
  • Electrochromic (EC) devices are capable of reversibly changing their optical properties upon charge injection and extraction induced by the external voltage. The characteristics of the EC device, such as low power consumption, high coloration efficiency, and memory effects under open circuit status, make them suitable for use in a variety of applications including smart windows and electronic papers. Coloration due to reduction or oxidation of redox chromophores can be used for EC devices (e-paper), but the switching time is slow (second level). Recently, with increasing demand for the low cost, lightweight flat panel display with paper-like readability (electronic paper), an EC display technology based on dye-modified $TiO_2$ nanoparticle electrode was developed. A well known organic dye molecule, viologen, was adsorbed on the surface of a mesoporous $TiO_2$ nanoparticle film to form the EC electrode. On the other hand, ZnO is a wide bandgap II-VI semiconductor which has been applied in many fields such as UV lasers, field effect transistors and transparent conductors. The bandgap of the bulk ZnO is about 3.37 eV, which is close to that of the $TiO_2$ (3.4 eV). As a traditional transparent conductor, ZnO has excellent electron transport properties, even in ZnO nanoparticle films. In the past few years, one-dimension (1D) nanostructures of ZnO have attracted extensive research interest. In particular, 1D ZnO nanowires renders much better electron transportation capability by providing a direct conduction path for electron transport and greatly reducing the number of grain boundaries. These unique advantages make ZnO nanowires a promising matrix electrode for EC dye molecule loading. ZnO nanowires grow vertically from the substrate and form a dense array (Fig. 1). The ZnO nanowires show regular hexagonal cross section and the average diameter of the ZnO nanowires is about 100 nm. The cross-section image of the ZnO nanowires array (Fig. 1) indicates that the length of the ZnO nanowires is about $6\;{\mu}m$. From one on/off cycle of the ZnO EC cell (Fig. 2). We can see that, the switching time of a ZnO nanowire electrode EC cell with an active area of $1\;{\times}\;1\;cm^2$ is 170 ms and 142 ms for coloration and bleaching, respectively. The coloration and bleaching time is faster compared to the $TiO_2$ mesoporous EC devices with both coloration and bleaching time of about 250 ms for a device with an active area of $2.5\;cm^2$. With further optimization, it is possible that the response time can reach ten(s) of millisecond, i.e. capable of displaying video. Fig. 3 shows a prototype with two different transmittance states. It can be seen that good contrast was obtained. The retention was at least a few hours for these prototypes. Being an oxide, ZnO is oxidation resistant, i.e. it is more durable for field emission cathode. ZnO nanotetropods were also applied to realize the first prototype triode field emission device, making use of scattered surface-conduction electrons for field emission (Fig. 4). The device has a high efficiency (field emitted electron to total electron ratio) of about 60%. With this high efficiency, we were able to fabricate some prototype displays (Fig. 5 showing some alphanumerical symbols). ZnO tetrapods have four legs, which guarantees that there is one leg always pointing upward, even using screen printing method to fabricate the cathode.

  • PDF