DOI QR코드

DOI QR Code

Enhanced ${\varepsilon}$-Poly-$_L$-lysine Production from Streptomyces ahygroscopicus by a Combination of Cell Immobilization and In Situ Adsorption

  • Liu, Shengrong (School of Bioscience and Bioengineering, South China University of Technology) ;
  • Wu, Qingping (Guangdong Institute of Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, State Key Laboratory of Applied Microbiology (Ministry-Guangdong Province Jointly Breeding Base, South China)) ;
  • Zhang, Jumei (Guangdong Institute of Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, State Key Laboratory of Applied Microbiology (Ministry-Guangdong Province Jointly Breeding Base, South China)) ;
  • Mo, Shuping (Guangdong Institute of Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, State Key Laboratory of Applied Microbiology (Ministry-Guangdong Province Jointly Breeding Base, South China)) ;
  • Yang, Xiaojuan (Guangdong Institute of Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, State Key Laboratory of Applied Microbiology (Ministry-Guangdong Province Jointly Breeding Base, South China)) ;
  • Xiao, Chun (Guangdong Institute of Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, State Key Laboratory of Applied Microbiology (Ministry-Guangdong Province Jointly Breeding Base, South China))
  • Received : 2011.11.15
  • Accepted : 2012.05.14
  • Published : 2012.09.28

Abstract

${\varepsilon}$-Poly-$_L$-lysine (${\varepsilon}$-PL), produced by Streptomyces or Kitasatospora strains, is a homo-poly-amino acid of $_L$-lysine, which is used as a safe food preservative. The present study investigates the combined use of cell immobilization and in situ adsorption (ISA) to produce ${\varepsilon}$-PL in shaken flasks. Loofah sponge-immobilized Streptomyces ahygroscopicus GIM8 produced slightly more ${\varepsilon}$-PL than those immobilized on synthetic sponge, and sugarcane bagasse. Moreover, loofah sponge supported the maximum biomass. Hence, loofah sponge was chosen for cell immobilization. Meanwhile, the ion-exchange resin D152 was employed for ISA. The loofah sponge-immobilized cells produced $0.54{\pm}0.1g/l$ ${\varepsilon}$-PL, which significantly increased to $3.64{\pm}0.32g/l$ after combining with ISA through the addition of resin bags. The free cells with ISA using the dispersed resin yielded $2.73{\pm}0.26g/l$ of ${\varepsilon}$-PL, an increase from $0.82{\pm}0.08g/l$. These data illustrate that the proposed combination method improved production most significantly compared with either immobilization or ISA only. Moreover, the immobilized cells could be repeatedly used and an ${\varepsilon}$-PL total amount of $8.05{\pm}0.84g/l$ was obtained. The proposed combination method offers promising perspectives for ${\varepsilon}$-PL production.

Keywords

References

  1. Anisha, G. S. and P. Prema. 2008. Cell immobilization technique for the enhanced production of ${\alpha}$-galactosidase by Streptomyces griseoloalbus. Bioresour. Technol. 99: 3325-3330. https://doi.org/10.1016/j.biortech.2007.08.023
  2. Bae, J., H. Moon, K. K. Oh, C. H. Kim, D. S. Lee, S. W. Kim, and S. I. Hong. 2001. A novel bioreactor with an internal adsorbent for integrated fermentation and recovery of prodigiosinlike pigment produced from Serratia sp. KH-95. Biotechnol. Lett. 23: 1315-1319. https://doi.org/10.1023/A:1010573427080
  3. Bankar, S. B. and R. S. Singhal. 2011. Improved poly-${\varepsilon}$-lysine biosynthesis using Streptomyces noursei NRRL 5126 by controlling dissolved oxygen during fermentation. J. Microbiol. Biotechnol. 21: 652-658.
  4. EI-Naggar, M. Y., M. A. Hassan, W. Y. Said, and S. A. EIAassar. 2003. Effect of support materials on antibiotic MSW2000 production by immobilized Streptomyces violatus. J. Gen. Appl. Microbiol. 49: 235-243. https://doi.org/10.2323/jgam.49.235
  5. Hiraki, J. 2000. ${\varepsilon}$-Polylysine: Its development and utilization. Fine Chem. 29: 18-25.
  6. Hiraki, J., M. Hatakeyama, S. Morita, and Y. Izumi. 1998. Improved ${\varepsilon}$-poly-L-lysine production of an S-(2-aminoethyl)-Lcysteine resistance mutant of Streptomyces albulus. Seibutsu Kogaku 76: 487-493.
  7. Hiraki, J., T. Ichikawa, S. Ninomiya, H. Seki, K. Uohama, H. Seki, et al. 2003. Use of ADME studies to confirm the safety of ${\varepsilon}$-polylysine as a preservative in food. Regul. Toxicol. Pharmacol. 37: 328-340. https://doi.org/10.1016/S0273-2300(03)00029-1
  8. Hirohara, H., M. Takehara, and M. Saimura. 2006. Biosynthesis of poly(${\varepsilon}$-L-lysine)s in two newly isolated strains of Streptomyces sp. Appl. Microbiol. Biotechnol. 73: 321-331. https://doi.org/10.1007/s00253-006-0479-2
  9. Hua, D. L., C. Q. Ma, L. F. Song, S. Lin, Z. B. Zhang, Z. X. Deng, and P. Xu. 2007. Enhanced vanillin production from ferulic acid using adsorbent resin. Appl. Microbiol. Biotechnol. 74: 783-790. https://doi.org/10.1007/s00253-006-0735-5
  10. Huang, J. M., Q. P. Wu, S. R. Liu, and J. M. Zhang. 2011. Screening of new ${\varepsilon}$-polylysine producing strain and structure identification of its product. Microbiol. China 38: 871-877.
  11. Kahar, P., T. Iwata, J. Hiraki, E. Park, and M. Okabe. 2001. Enhancement of ${\varepsilon}$-polylysine production by Streptomyces albulus strain 410 using pH control. J. Biosci. Bioeng. 91: 190-194. https://doi.org/10.1016/S1389-1723(01)80064-5
  12. Liu, S. R., Q. P. Wu, J. M. Zhang, and S. P. Mo. 2011. Production of ${\varepsilon}$-poly-L-lysine by Streptomyces sp. using resinbased, in situ product removal. Biotechnol. Lett. 33: 1581-1585. https://doi.org/10.1007/s10529-011-0616-6
  13. Marshall, V. P., S. J. McWethy, J. M. Sirotti, and J. I. Cialdella. 1990. The effect of neutral resins on the fermentation production of rubradirin. J. Ind. Microbiol. 5: 283-287. https://doi.org/10.1007/BF01578202
  14. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  15. Nishikawa, M. and K. Ogawa. 2002. Distribution of microbes producing antimicrobial ${\varepsilon}$-poly-L-lysine polymers in soil microflora determined by a novel method. Appl. Environ. Microbiol. 68: 3575-3581. https://doi.org/10.1128/AEM.68.7.3575-3581.2002
  16. Saudagar, P. S., N. S. Shaligram, and R. S. Singhal. 2008. Immobilization of Streptomyces clavuligerus on loofah sponge for the production of clavulanic acid. Bioresour. Technol. 99: 2250-2253. https://doi.org/10.1016/j.biortech.2007.05.004
  17. Shih, I. L., M. H. Shen, and Y. T. Van. 2006. Microbial synthesis of poly(${\varepsilon}$-lysine) and its various applications. Bioresour. Technol. 97: 1148-1159. https://doi.org/10.1016/j.biortech.2004.08.012
  18. Shih, I. L., T. C. Wang, S. Z. Chou, and G. D. Lee. 2010. Sequential production of two biopolymers levan and poly-${\varepsilon}$-lysine by microbial fermentation. Bioresour. Technol. 102: 3966-3969.
  19. Shima, S., Y. Fukuhara, and H. Sakai. 1982. Inactivation of bacteriophages by ${\varepsilon}$-poly-L-lysine produced by Streptomyces. Agric. Biol. Chem. 46: 1917-1919. https://doi.org/10.1271/bbb1961.46.1917
  20. Shima, S., H. Matsuoka, T. Iwamoto, and H. Sakai. 1984. Antimicrobial action of ${\varepsilon}$-poly-L-lysine. J. Antibiot. 37: 1449-1455. https://doi.org/10.7164/antibiotics.37.1449
  21. Shima, S. and H. Sakai. 1977. Polylysine produced by Streptomyces. Agric. Biol. Chem. 41: 1907-1909.
  22. Shirling, E. B. and D. Gottlieb. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16: 313-340. https://doi.org/10.1099/00207713-16-3-313
  23. Srinivasulu, B., R. S. Prakasham, A. Jetty, S. Srinivas, P. Ellaiah, and S. V. Ramakrishna. 2002. Neomycin production with free and immobilized cells of Streptomyces marinensis in an airlift reactor. Process Biochem. 38: 593-598. https://doi.org/10.1016/S0032-9592(02)00182-6
  24. Zhang, Y., X. H. Feng, H. Xu, Z. Yao, and P. K. Ouyang. 2010. ${\varepsilon}$-Poly-L-lysine production by immobilized cells of Kitasatospora sp. MY 5-36 in repeated fed-batch cultures. Bioresour. Technol. 101: 5523-5527. https://doi.org/10.1016/j.biortech.2010.02.021

Cited by

  1. Construction of a Genetic System for Streptomyces albulus PD-1 and Improving Poly(ε-ʟ-lysine) Production Through Expression of Vitreoscilla Hemoglobin vol.25, pp.11, 2012, https://doi.org/10.4014/jmb.1506.06084
  2. Efficient Production of ε-Poly-L-Lysine by Streptomyces ahygroscopicus Using One-Stage pH Control Fed-Batch Fermentation Coupled with Nutrient Feeding vol.25, pp.3, 2012, https://doi.org/10.4014/jmb.1405.05069
  3. Identification of the Potential Biological Preservative Tetramycin A-Producing Strain and Enhancing Its Production vol.10, pp.None, 2012, https://doi.org/10.3389/fmicb.2019.02925