• Title/Summary/Keyword: Promising Fields

Search Result 274, Processing Time 0.023 seconds

Quantum computing using applied electric field to quantum dots

  • Meighan, A.;Rostami, A.;Abbasian, K.
    • Advances in nano research
    • /
    • v.2 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • In recent years, spins of confined carriers in quantum dots are promising candidates for the logical units in quantum computers. In many concepts developed so far, the individual spin q-bits are being manipulated by magnetic fields, which is difficult to achieve. In the current research the recent developments of spin based quantum computing has been reviewed. Then, Single-hole spin in a molecular quantum dots with less energy and more speed has been electrically manipulated and the results have been compared with the magnetic manipulating of the spin.

A Deep Learning Approach for Classification of Cloud Image Patches on Small Datasets

  • Phung, Van Hiep;Rhee, Eun Joo
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.3
    • /
    • pp.173-178
    • /
    • 2018
  • Accurate classification of cloud images is a challenging task. Almost all the existing methods rely on hand-crafted feature extraction. Their limitation is low discriminative power. In the recent years, deep learning with convolution neural networks (CNNs), which can auto extract features, has achieved promising results in many computer vision and image understanding fields. However, deep learning approaches usually need large datasets. This paper proposes a deep learning approach for classification of cloud image patches on small datasets. First, we design a suitable deep learning model for small datasets using a CNN, and then we apply data augmentation and dropout regularization techniques to increase the generalization of the model. The experiments for the proposed approach were performed on SWIMCAT small dataset with k-fold cross-validation. The experimental results demonstrated perfect classification accuracy for most classes on every fold, and confirmed both the high accuracy and the robustness of the proposed model.

Development of Risk-Based Inspection(RBI) Technology for LNG Plant Based on API RP581 Code (API RP 581 Code를 기반으로한 LNG 플랜트의 Risk-Based Inspection(RBI) 기술 개발)

  • Choi, Song-Chun;Choi, Jae-Boong;Hawang, In-Ju
    • Corrosion Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.179-183
    • /
    • 2012
  • As one of promising solutions to overcome high oil price and energy crisis, the construction market of high value-added LNG plants is spotlighted world widely. The purpose of this study is to introduce LNG-RBI system to develop risk assessment technology with RAM(Reliability, Availability, Maintainability) modules against overseas monopolization. After analyzing relevant specific features and their technical levels, risk assessment program, non-destructive reliability evaluation strategy and safety criteria unification class are derived as core technologies. These IT-based convergence technologies can be used for enhancement of LNG plant efficiency, in which the modular parts are related to a system with artificial optimized algorithms as well as diverse databases of facility inspection and diagnosis fields.

High field HTS insert coils : Status and key technical issue

  • Schwartz, Justin
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.22-22
    • /
    • 2000
  • The discoveries of high temperature superconductors received great attention due to their high critical temperatures. These materials also exhibit extremely high critical magnetic fields and high critical current density at low temperature, high magnetic field. Thus, they are the most promising materials for superconducting magnets above 20 T. In this talk, progress in the development of HTS materials and insert coils at the National High Magnetic Field Laboratory will be reviewed. In 1999, a Bi-2212 stack of double pancakes generated 3 T in a 19 T background field. These results will be reviewed in terms of implications for future systems. Individual double pancakes of Bi-2223 have also been tested and their performance will also be discused. The present goal of a 57 system will be presented and the key technical requirements for larger, higher field systems will be addressed. It will be shown that in addition to increased critical current density, improved mechanical performance (stain resistanced) is necessary for high field systems. Furthemore, improvements in the conductor n-value will improve prospects for operational systems.

  • PDF

Dynamic Signature Verification System for the User Authentication Security (사용자 인증 보안을 위한 동적 서명인증시스템)

  • 김진환;조혁규;차의영
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.131-134
    • /
    • 2002
  • As the increased use of computer, wired/wireless/mobile Internet, security in using Internet becomes a more important problem. Thus, biometric technology using physical and behavior characteristics of a person is hot issue. Many different types of biometric technologies of a person such as fingerprint, face, iris, vein, DNA, brain wave, palm, voice, dynamic signature, etc. had already been studied but remained unsuccessful because they do not meet social demands. However, recently many of these technologies have been actively revived and researchers have developed new products on various commercial fields. Dynamic signature verification technology is to verify the signer by calculating his writing manner, speed, angle, and the number of strokes, order, the down/up/movement of pen when the signer input his signature with an electronic pen for his authentication. Then signature verification system collects mentioned above various feature information and compares it with the original one and simultaneously analyzes to decide whether signature is forgery or true. The prospect of signature verification technology is very promising and its use will be wide spread in terms of economy, security, practicality, stability and convenience.

  • PDF

A study on Improvement of Critical Current for Bi-2223 HTS Tapes (Bi-2223 고온초전도 선재의 임계전류 향상에 관한 연구)

  • 하홍수;정종만;이남진;장현만;하동우;오상수;권영길;류강식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.3-5
    • /
    • 2000
  • Among the various processing techniques used in HTS wire fabrication, the PIP(Powder In Tube) method is currently one of the most promising for applications on an industrial scale. In this study, we have fabricated Bi-2223/Ag superconducting tapes using the modified PIT process, where several process factors were changed and improved, ie., powder packing, drawing, rolling and heat treatment. We obtained Bi-2223 tape that have high critical current, 46 a at 77.3 K, have high critical current, 46A at 77.3 K, self field although the tape was not pressed but only rolled. The critical current of 100m class long length tape was measured 21.6A at the same criterion. Besides, the critical current of Bi-2223/Ag tape was measured applying magnetic fields with different directions at various temperatures.

  • PDF

Design and Multi-scale Analysis of Micro Contact Printing (미세접촉인쇄기법의 설계와 다중스케일해석)

  • Kim, Jung-Yup;Kim, Jae-Hyun;Choi, Byung-Ik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1927-1931
    • /
    • 2003
  • Nanometer-sized structures are being applied to many fields including micro/nano electronics, optoelectronics, quantum computing, biosensors, etc. Micro contact printing is one of the most promising methods for manufacturing the nanometer-sized structures. The crucial element for the micro contact printing is the nano-resolution printing technique using polymeric stamps. In this study, a multi-scale analysis scheme for simulating the micro contact printing process is proposed and some useful analysis results are presented. Using the slip-link model [1], the dependency of viscoelasticity on molecular weight of polymer stamp is predicted. Deformation behaviors of polymeric stamps are analyzed using finite element method based upon the predicted viscoelastic properties.

  • PDF

Develpment of Textile-based Organic Solar Cell

  • Lee, Seung-U;Kim, Yeong-Min;Jeon, Ji-Hun;Lee, Yeong-Hun;Divij, Bhatia;Choe, Deok-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.460-460
    • /
    • 2014
  • Organic photovoltaic cells (OPV) have been extensively studied due to their unique properties such as flexibility, light-weight, easy processability, cost-effectiveness, and being environmental friendly. These advantages make them an attractive candidate for application in various novel fields and promising development with new features. Photovoltaic cell-integrated textiles have greatly attractive features as a power source for the smart textile solutions, and OPV is most ideal form factor due to advantage of flexibility. In this study, we develop a textile-based OPV through various experimental methods and we suggest the direction for the design of the photovoltaic textile. We used a textile electrode and tried to various layouts for textile-based OPV. Finally, we determined the contact area by using Hertzian theory for the calculation of power conversion efficiency (PCE). Based on the results of calculation, the short circuit current density, Isc, was $13.11mA/cm^2$ under AM 1.5condition and the PCE was around 2.5%.

  • PDF

The study of Low Temperature Pasteurization System using High Voltage High Current Pulse Electric Field (고압 대전류 펄스 전계를 이용한 저온 살균장치 시스템 연구)

  • ;;;;Pavlov
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.162-165
    • /
    • 1998
  • The non-thermal pasteurization of foods using High Voltage High Current Pulsed Electric Fields (HVHC-PEF) is a promising technology and a sound complement or replacement to traditional thermal pasteurization. The conventional thermal method also inactivates bacteria and other microorganisms harmful to humans, but degrades natural color, flavor, texture and nutrients. At this point, a nonthermal pasteurization technique, HVPEF is thought to be a new processing technique which is able to produce a good quality foods nutritional as well as sensuous. In this paper, the system for HVHC-PEF pasteurization is presented. It use square wave pulse instead of exponential ones. So, power rating of system is reduced considerably. Design considerations for 20kV 500A class equipment are analyzed and experimental results are discussed.

  • PDF

Antimicrobial Peptide as a Novel Antibiotic for Multi-Drug Resistance "Super-bacteria" (다제내성 슈퍼박테리아에 대한 새로운 항생제인 항균 펩타이드)

  • Park, Seong-Cheol;Nah, Jae-Woon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.429-432
    • /
    • 2012
  • According to the requirement of novel antimicrobial agents for the rapidly increasing emergence of multi-drug resistant pathogenic microbes, a number of researchers have found new antibiotics to overcome this resistance. Among them, antimicrobial peptides (AMPs) are host defense molecules found in a wide variety of invertebrate, plant, and animal species, and are promising to new antimicrobial candidates in pharmatherapeutic fields. Therefore, this review introduces the antimicrobial action of antimicrobial peptide and ongoing development as a pharmetherapeutic agent.