DOI QR코드

DOI QR Code

Quantum computing using applied electric field to quantum dots

  • Meighan, A. (School of Engineering Emerging-Technologies, University of Tabriz) ;
  • Rostami, A. (School of Engineering Emerging-Technologies, University of Tabriz) ;
  • Abbasian, K. (School of Engineering Emerging-Technologies, University of Tabriz)
  • Received : 2013.03.07
  • Accepted : 2013.12.27
  • Published : 2014.03.25

Abstract

In recent years, spins of confined carriers in quantum dots are promising candidates for the logical units in quantum computers. In many concepts developed so far, the individual spin q-bits are being manipulated by magnetic fields, which is difficult to achieve. In the current research the recent developments of spin based quantum computing has been reviewed. Then, Single-hole spin in a molecular quantum dots with less energy and more speed has been electrically manipulated and the results have been compared with the magnetic manipulating of the spin.

Keywords

References

  1. Andlauer, T., Morschl, R. and Vogl, P. (2008), "Gauge-invariant discretization in multiband envelope function theory and g factors in nanowire dots", Phys. Rev. B, 78, 75317-13. https://doi.org/10.1103/PhysRevB.78.075317
  2. Andlauer, T. and Vogl, P. (2009), "Electrically controllable g tensors in quantum dot molecules", Phys. Rev. B, 79, 45307, 1-7.
  3. Bayer, M., Stern, O., Kuther, A. and Forchel, A. (2000), "Spectroscopic study of dark excitons in InxGa1-xAs self-assembled quantum dots by a magnetic-field-induced symmetry breaking", Phys. Rev. B, 61, 7273-7276. https://doi.org/10.1103/PhysRevB.61.7273
  4. Bjork, M.T., Fuhrer, A., Hansen, A.E., Larsson, M.W., Froberg, L.E. and Samuelson, L. (2005), "Tunable effective g factor in InAs nanowire quantum dots", Phys. Rev. B, 72, 201307-4. https://doi.org/10.1103/PhysRevB.72.201307
  5. Bracker, A.S., Scheibner, M., Doty, M.F., Stinaff, E.A., Ponomarev, I.V., Kim, J.C., Whitman, L.J., Reinecke, T.L. and Gammon, D. (2006), "Engineering electron and hole tunneling with asymmetric InAs quantum dot molecules", Appl. Phys. Lett., 89, 233110-3. https://doi.org/10.1063/1.2400397
  6. Jiang, H.W. and Yablonovitch, E. (2001), "Gate-controlled electron spin resonance in heterostructures", Phys. Rev. B, 64, 41307-1. https://doi.org/10.1103/PhysRevB.64.041307
  7. Kato, Y., Myers, R.C., Driscoll, D.C., Gossard, A.C., Levy, J. and Awschalom, D.D. (2003), "Gigahertz electron spin manipulation using voltage-controlled g-tensor modulation", Science, 299, 1201-1204. https://doi.org/10.1126/science.1080880
  8. Koppens, F.H.L., Buizert, C., Tielrooij, K.J., Vink, I., Nowack, T., Meunier, T., Kouwenhoven, L.P. and Vandersypen, L.M.K. (2006), "Driven coherent oscillations of a single electron spin in a quantum dot", Nature, 442, 766-771. https://doi.org/10.1038/nature05065
  9. Krenner, H., Sabathil, J.M., Clark, E., Kress, C.A., Schuh, D., Bichler, M., Abstreiter, G. and Finley, J.J. (2005), "Direct observation of controlled coupling in an individual quantum dot molecule", Phys. Rev. Lett., 94, 57402-4. https://doi.org/10.1103/PhysRevLett.94.057402
  10. Kroutvar, M., Ducommun, Y., Heiss, D., Bichler, M., Schuh, D., Abstreiter, G. and Finley, J.J. (2004), "Optically programmable electron spin memory using semiconductor quantum dots", Nature, 432, 81-84. https://doi.org/10.1038/nature03008
  11. Lloyd, S. (1993), "A potentially realizable quantum computer", Science, 261, 1569-1571. https://doi.org/10.1126/science.261.5128.1569
  12. Loss, D. and DiVincenzo, D.P. (1998), "Quantum computation with quantum dots", Phys. Rev. A, 57, 120-126. https://doi.org/10.1103/PhysRevA.57.120
  13. Mayer Alegre, T.P., Hernandez, F.G.G., Pereira, A.L.C. and Medeiros-Ribeiro, G. (2006), "Lande g tensor in semiconductor nanostructures", Phys. Rev. Lett., 97, 236402-4. https://doi.org/10.1103/PhysRevLett.97.236402
  14. Nakaoka, T., Saito, T., Tatebayashi, J. and Arakawa, Y. (2004), "Size-dependent exciton g factor in self-assembled InAs/InP quantum dots", Phys. Rev. B, 70, 45311-7. https://doi.org/10.1103/PhysRevB.70.045311
  15. Petta, J.R., Johnson, A.C.J., Taylor, M., Laird, E.A., Marcus, C.M., Hanson, M.P. and Gossard, A.C. (2005), "Coherent manipulation of coupled electron spins in semiconductor quantum dots", Science, 309, 2180-2184. https://doi.org/10.1126/science.1116955
  16. Pingenot, J., Pryor, C.E. and Flatte, M.E. ( 2008), "Method for full bloch-sphere control of a localized spin via a single electrical gate", Appl. Phys. Lett., 92, 222502-3 . https://doi.org/10.1063/1.2937305
  17. Pryor, C.E. and Flatte, M.E. (2006), "Lande g factors and orbital momentum quenching in semiconductor quantum dots", Phys. Rev. Lett., 96, 26804-4. https://doi.org/10.1103/PhysRevLett.96.026804
  18. Rietjens, J.H.H., Quax, G.W.W., Bosco, C.A.C., Notzel, R., Silov, A.Y. and Koopmans, B.J. (2008), "Optical control over electron g factor and spin decoherence in (In, Ga)As/GaAs quantum dots", Appl. Phys., 103, 116-3.
  19. Salis, G., Kato, Y., Ensslin, K., Driscoll, D.C.A., Gossard, C. and Awschalom, D.D. (2001), "Electrical control of spin coherence in semiconductor nanostructures", Nature, 414, 619-622. https://doi.org/10.1038/414619a
  20. Sheng, W. and Babinski, A. (2007), "Zero g factors and nonzero orbital momenta in self-assembled quantum dots", Phys. Rev. B, 75, 33316-4. https://doi.org/10.1103/PhysRevB.75.033316

Cited by

  1. Interband optical properties in wide band gap group-III nitride quantum dots vol.3, pp.1, 2015, https://doi.org/10.12989/anr.2015.3.1.013