• Title/Summary/Keyword: Projection Parameters

Search Result 235, Processing Time 0.025 seconds

Change of Radiologic Index of Foot according to Radiation Projection Angle: A Study Using Phantom Foot (방사선 투과 각도에 따른 족부 방사선 지표의 변화: Phantom Foot을 이용한 연구)

  • Kim, Eo Jin;Seo, Sang Gyo;Lee, Dong Yeon
    • Journal of Korean Foot and Ankle Society
    • /
    • v.19 no.4
    • /
    • pp.165-170
    • /
    • 2015
  • Purpose: The purpose of this study is to analyze the measurement differences of simple radiographs according to radiation projection angle using a phantom and to propose methods for objective analysis of simple radiographs. Materials and Methods: We took simple radiographs with different projection angles using a C-arm image intensifier and measured five parameters of the foot on the simple radiographic images. Five parameters include lateral tibiocalcaneal angle, lateral talocalcaneal angle, naviculocuboid overlap, lateral talo-first metatarsal angle, and lateral calcaneo-first metatarsal angle. Intraobserver and interobserver reliability were verified, and then intraclass correlations of parameters were analyzed. Results: Radiographic parameters of the foot showed high intraobserver and interobserver reliability. Lateral tibiocalcaneal angle has a strong negative linear relationship with rotation and a moderate negative linear relationship with tilt. Lateral talocalcaneal angle has a moderate positive linear relationship with rotation and a strong positive linear relationship with tilt. Naviculocuboid overlap has a strong positive linear relationship with rotation and a moderate positive linear relationship with tilt. Lateral talo-first metatarsal angle does not have a linear relationship with rotation and a moderate negative linear relationship with tilt. Lateral calcaneo-first metatarsal angle has a moderate positive linear relationship with rotation and tilt. Conclusion: More precise evaluation of the foot with a simple radiograph can be performed by understanding the changes of radiographic parameters according to radiation projection angle.

Establishment of New Single Origin Plane Rectangular Coordinate System in Korea (한국의 새로운 단일원점 평면직각좌표계 설정)

  • Kim, Tae Woo;Yun, Hong Sik;Lee, Dong Ha;Kim, Gun Soo;Koh, Young Chang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.3
    • /
    • pp.183-192
    • /
    • 2013
  • As a worldwide trend, the spatial information that is established by country, institution and purpose is integrated into the data with a single spatial reference to improve the data connectivity and usability. In this study, a new national single origin plane rectangular coordinate system was studied to efficiently respond to the changes in the spatial reference according to the introduction of a new national geodetic standard and to the demand of seamless data service in the spatial information sector. For this purpose, the Korean Peninsula was set as the projection region and the projection distortion in the projection region was analyzed. The projection parameters were defined to homogenize and minimize the projection distortion, and their standardization and registration on the international organizations were conducted. The study on the required optimal projection equation resulted in the Hooijberg projection equation and projection parameters (${\Phi}$, ${\lambda}$, K, N, E) resulted in $38^{\circ}N$ and $128^{\circ}E$ projection origin, and a scale factor of 0.99924. The proper false northing and easting were 700,000m N and 400,000m E, respectively, considering the introduction of country station index system.

Creep strain modeling for alloy 690 SG tube material based on modified theta projection method

  • Moon, Seongin;Kim, Jong-Min;Kwon, Joon-Yeop;Lee, Bong-Sang;Choi, Kwon-Jae;Kim, Min-Chul
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1570-1578
    • /
    • 2022
  • During a severe accident, steam generator (SG) tubes undergo rapid changes in the pressure and temperature. Therefore, an appropriate creep model to predict a short term creep damage is essential. In this paper, a novel creep model for Alloy 690 SG tube material was proposed. It is based on the theta (θ) projection method that can represent all three stages of the creep process. The original θ projection method poses a limitation owing to its inability to represent experimental creep curves for SG tube materials for a large strain rate in the tertiary creep region. Therefore, a new modified θ projection method is proposed; subsequently, a master curve for Alloy 690 SG material is also proposed to optimize the creep model parameters, θi (i = 1-5). To adapt the implicit creep scheme to the finite element code, a partial derivative of incremental creep with respect to the stress is necessary. Accordingly, creep model parameters with a strictly linear relationship with the stress and temperature were proposed. The effectiveness of the model was validated using a commercial finite element analysis software. The creep model can be applied to evaluate the creep rupture behavior of SG tubes in nuclear power plants.

Restoration of Chest X-ray Image Using Dual Projection Filter (이중 프로젝션 필터를 이용한 흉부 X-선 영상의 복원)

  • 이태수;민병구
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.25-32
    • /
    • 1992
  • A new restoration method of chest X -ray image (dual project filter) was proposed to improve SNR(signal to noise ratio) characteristics. In this method, a priori Information of system and anatomical structure and statistics of projected object are used in the design of filter. Dual projection filter varies its parameters, adapting to the local regions of chest(lung region, mediasternum, subdiaphragm) and the structure of chest (bone, tissue, blood vessel, bronchia). The performance of Dual Projection Filter was 0.1-0.2dB better than Dual Sensor Wiener Filter, which was used for initial estimate of Dual Porjection Filter.

  • PDF

A Quantitative Model for the Projection of Health Expenditure (의료비 결정요인 분석을 위한 계량적 모형 고안)

  • Kim, Han-Joong;Lee, Young-Doo;Nam, Chung-Mo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.24 no.1 s.33
    • /
    • pp.29-36
    • /
    • 1991
  • A multiple regression analysis using ordinary least square (OLS) is frequently used for the projection of health expenditure as well as for the identification of factors affecting health care costs. Data for the analysis often have mixed characteristics of time series and cross section. Parameters as a result of OLS estimation, in this case, are no longer the best linear unbiased estimators (BLUE) because the data do not satisfy basic assumptions of regression analysis. The study theoretically examined statistical problems induced when OLS estimation was applied with the time series cross section data. Then both the OLS regression and time series cross section regression (TSCS regression) were applied to the same empirical da. Finally, the difference in parameters between the two estimations were explained through residual analysis.

  • PDF

Online Parameter Estimation of SPMSM using Affine Projection Algorithm (Affine Projection 알고리즘을 이용한 표면 부착형 영구자석 전동기의 온라인 파라미터 추정)

  • Moon, Byung-Hun;Kim, Hyoung-Woo;Choi, Joon-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.66-71
    • /
    • 2018
  • We propose an online parameter estimation method for surface-mounted permanent-magnet synchronous motor (SPMSM) using an affine projection algorithm (APA). The proposed method estimates parameters with two APAs based on the discrete-time model equation of SPMSM during motor operation. The first APA is designed to estimate inductance, and the second APA is designed to estimate resistance and flux linkage. However, in case when the d-axis current is controlled to 0A, the second APA cannot estimate resistance and flux linkage simultaneously because the matrix rank in APA becomes deficient. To overcome this problem, we temporarily inject a negative reference current input to the d-axis control loop, and the matrix in the APA then becomes full rank, which enables the simultaneous estimation of resistance and flux linkage. The proposed method is verified by PSIM simulation and an actual experiment, and the results reveal that SPMSM parameters can be estimated online during motor operation.

Velocity Controller Design for Fish Sorting Belt Conveyor System using M-MRAC and Projection Operator

  • Nguyen, Huy Hung;Tran, Minh Thien;Kim, Dae Hwan;Kim, Hak Kyeong;Kim, Sang Bong
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.42-50
    • /
    • 2017
  • A velocity controller using a modified model reference adaptive controller (M-MRAC) and a projection operator for a fish sorting belt conveyor system with uncertainty parameters, input saturation and bounded disturbances is proposed in this paper. To improve the tracking performance and robustness of the proposed controller in the presence of bounded disturbances, the followings are done. Firstly, the reference model for the conventional model reference adaptive controller (CMRAC) is replaced by a modified reference model for a M-MRAC to reduce unexpected high frequency oscillation in control input signal when the adaptation rate is increased. Secondly, estimated parameters in an adaptive law are varied smoothly under bounded external disturbances and a projection operator is utilized in an adaptive law for the proposed M-MRAC controller to be robust. Thirdly, an auxiliary error vector is introduced for compensating the error dynamics of the system when the saturation input occurs. Finally, the experimental results are shown to verify the better effectiveness and performance of the proposed controller under the bounded disturbance and saturated input than that of a CMRAC.

Leader-following Approach Based Adaptive Formation Control for Mobile Robots with Unknown Parameters (미지의 파라미터를 갖는 이동 로봇들을 위한 선도-추종 방법 기반 적응 군집 제어)

  • Moon, Ssurey;Park, Bong-Seok;Choi, Yoon-Ho;Park, Jin-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1592-1598
    • /
    • 2011
  • In this paper, a formation control method based on the leader-following approach for nonholonomic mobile robots is proposed. In the previous works, it is assumed that the followers know the leader's velocity by means of communication. However, it is difficult that the followers correctly know the leader's velocity due to the contamination or delay of information. Thus, in this paper, an adaptive approach based on the parameter projection algorithm is proposed to estimate the leader's velocity. Moreover, the adaptive backstepping technique is used to compensate the effects of a dynamic model with the unknown time-invariant and time-varying parameters. From the Lyapunov stability theory, it is proved that the errors of the closed-loop system are uniformly ultimately bounded. Simulation results illustrate the effectiveness of the proposed control method.

Fuzzy Neural Network Based Generalized Predictive Control of Chaotic Nonlinear Systems (혼돈 비선형 시스템의 퍼지 신경 회로망 기반 일반형 예측 제어)

  • Park, Jong-Tae;Park, Yoon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.2
    • /
    • pp.65-75
    • /
    • 2004
  • This paper presents a generalized predictive control method based on a fuzzy neural network(FNN) model, which uses the on-line multi-step prediction, fur the intelligent control of chaotic nonlinear systems whose mathematical models are unknown. In our design method, the parameters of both predictor and controller are tuned by a simple gradient descent scheme, and the weight parameters of FNN are determined adaptively during the operation of the system. In order to design a generalized predictive controller effectively, this paper describes computing procedure for each of the two important parameters. Also, we introduce a projection matrix to determine the control input, which deceases the control performance function very rapidly. Finally, in order to evaluate the performance of our controller, the proposed method is applied to the Doffing and Henon systems, which are two representative continuous-time and discrete-time chaotic nonlinear systems, res reactively.

Locally Initiating Line-Based Object Association in Large Scale Multiple Cameras Environment

  • Cho, Shung-Han;Nam, Yun-Young;Hong, Sang-Jin;Cho, We-Duke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.358-379
    • /
    • 2010
  • Multiple object association is an important capability in visual surveillance system with multiple cameras. In this paper, we introduce locally initiating line-based object association with the parallel projection camera model, which can be applicable to the situation without the common (ground) plane. The parallel projection camera model supports the camera movement (i.e. panning, tilting and zooming) by using the simple table based compensation for non-ideal camera parameters. We propose the threshold distance based homographic line generation algorithm. This takes account of uncertain parameters such as transformation error, height uncertainty of objects and synchronization issue between cameras. Thus, the proposed algorithm associates multiple objects on demand in the surveillance system where the camera movement dynamically changes. We verify the proposed method with actual image frames. Finally, we discuss the strategy to improve the association performance by using the temporal and spatial redundancy.