• 제목/요약/키워드: Progenitors

검색결과 131건 처리시간 0.029초

Osteogenic Potency of Nacre on Human Mesenchymal Stem Cells

  • Green, David W.;Kwon, Hyuk-Jae;Jung, Han-Sung
    • Molecules and Cells
    • /
    • 제38권3호
    • /
    • pp.267-272
    • /
    • 2015
  • Nacre seashell is a natural osteoinductive biomaterial with strong effects on osteoprogenitors, osteoblasts, and osteoclasts during bone tissue formation and morphogenesis. Although nacre has shown, in one study, to induce bridging of new bone across large non-union bone defects in 8 individual human patients, there have been no succeeding human surgical studies to confirm this outstanding potency. But the molecular mechanisms associated with nacre osteoinduction and the influence on bone marrow-derived mesenchymal stem cells (BMSC's), skeletal stem cells or bone marrow stromal cells remain elusive. In this study we highlight the phenotypic and biochemical effects of Pinctada maxima nacre chips and the global nacre soluble protein matrix (SPM) on primary human bone marrow-derived stromal cells (hBMSCs) in vitro. In static co-culture with nacre chips, the hBMSCs secreted Alkaline phosphatase (ALP) at levels that exceeded bone morphogenetic protein (rhBMP-2) treatment. Concentrated preparation of SPM applied to Stro-1 selected hBMSC's led to rapid ALP secretions, at concentrations exceeding the untreated controls even in osteogenic conditions. Within 21 days the same population of Stro-1 selected hBMSCs proliferated and secreted collagens I-IV, indicating the premature onset of an osteoblast phenotype. The same SPM was found to promote unselected hBMSC differentiation with osteocalcin detected at 7 days, and proliferation increased at 7 days in a dose-dependent manner. In conclusion, nacre particles and nacre SPM induced the early stages of human bone cell differentiation, indicating that they may be promising soluble factors with osteoinductive capacity in primary human bone cell progenitors such as, hBMSC's.

Inhibition of MicroRNA-221 and 222 Enhances Hematopoietic Differentiation from Human Pluripotent Stem Cells via c-KIT Upregulation

  • Lee, Ji Yoon;Kim, MyungJoo;Heo, Hye-Ryeon;Ha, Kwon-Soo;Han, Eun-Taek;Park, Won Sun;Yang, Se-Ran;Hong, Seok-Ho
    • Molecules and Cells
    • /
    • 제41권11호
    • /
    • pp.971-978
    • /
    • 2018
  • The stem cell factor (SCF)/c-KIT axis plays an important role in the hematopoietic differentiation of human pluripotent stem cells (hPSCs), but its regulatory mechanisms involving microRNAs (miRs) are not fully elucidated. Here, we demonstrated that supplementation with SCF increases the hematopoietic differentiation of hPSCs via the interaction with its receptor tyrosine kinase c-KIT, which is modulated by miR-221 and miR-222. c-KIT is comparably expressed in undifferentiated human embryonic and induced pluripotent stem cells. The inhibition of SCF signaling via treatment with a c-KIT antagonist (imatinib) during hPSC-derived hematopoiesis resulted in reductions in the yield and multi-lineage potential of hematopoietic progenitors. We found that the transcript levels of miR-221 and miR-222 targeting c-KIT were significantly lower in the pluripotent state than they were in terminally differentiated somatic cells. Furthermore, suppression of miR-221 and miR-222 in undifferentiated hPSC cultures induced more hematopoiesis by increasing c-KIT expression. Collectively, our data implied that the modulation of c-KIT by miRs may provide further potential strategies to expedite the generation of functional blood cells for therapeutic approaches and the study of the cellular machinery related to hematologic malignant diseases such as leukemia.

OLOR-MAGNITUDE RELATIONS OF EARLY-TYPE DWARF GALAXIES IN THE VIRGO CLUSTER: AN ULTRAVIOLET PERSPECTIVE

  • Kim, Suk;Rey, Soo-Chang;Lisker, Thorsten;Sohn, Sangmo Tony
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.38.2-38.2
    • /
    • 2010
  • We present ultraviolet (UV) color-magnitude relations (CMRs) of early-type dwarf galaxies in the Virgo cluster, based on Galaxy Evolution Explorer (GALEX) UV and Sloan Digital Sky Survey (SDSS) optical imaging data. We find that dwarf lenticular galaxies (dS0s), including peculiar dwarf elliptical galaxies (dEs) with disk substructures and blue centers, show a surprisingly distinct and tight locus separated from that of ordinary dEs, which is not clearly seen in previous CMRs. The dS0s in UV CMRs follow a steeper sequence than dEs and show bluer UV-optical color at a given magnitude. We also find that the UV CMRs of dEs in the outer cluster region are slightly steeper than that of their counterparts in the inner region, due to the existence of faint, blue dEs in the outer region. We explore the observed CMRs with population models of a luminosity-dependent delayed exponential star formation history. We confirm that the feature of delayed star formation of early-type dwarf galaxies in the Virgo cluster is strongly correlated with their morphology and environment. The observed CMR of dS0s is well matched by models with relatively long delayed star formation. Our results suggest that dS0s are most likely transitional objects at the stage of subsequent transformation of late-type progenitors to ordinary red dEs in the cluster environment, In any case, UV photometry provides a powerful tool to disentangle the diverse subpopulations of early-type dwarf galaxies and uncover their evolutionary histories.

  • PDF

Revealing the Powering Mechanism of Lyman Alpha Blob via Polarization

  • Kim, Eunchong;Yang, Yujin;Zabludoff, Ann;Smith, Paul;Jannuzi, Buell;Lee, Myung Gyoon
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.35.4-36
    • /
    • 2018
  • $Ly{\alpha}$ blobs are mysterious, giant (~100 kpc), glowing gas clouds in the distant universe. They occupy the dark matter halos that will evolve into the richest groups and clusters today. The blob's gas may be the proto-intracluster medium and their embedded galaxies are considered as the progenitors of massive cluster galaxies. Yet we do not know why $Ly{\alpha}$ blobs glow. There are evidences of kinematic measurements to exclude shocks and winds from AGN or starbursts as a power source, suggesting that photoionizing radiation or scattering of $Ly{\alpha}$ photons might be responsible. Polarization mapping can discriminate between these photo-ionization and scattering. Previous results of imaging polarimetry for $Ly{\alpha}$ nebulae are roughly consistent with scattering models. However the polarization morphologies in those of previous results are all different, motivating our polarimetric survey of $Ly{\alpha}$ nebulae for the statisticallymeaningful sample. As initial results of our survey, we present the total polarization map of the LABd05 which has the spatial offset between the peak of $Ly{\alpha}$ surface brightness and an obscured AGN. We detect the significant polarization in this target with the radially increasing polarization gradient, suggesting that scattering plays major role within this nebula. The polarization pattern is more aligned with the $Ly{\alpha}$ peak rather than the AGN (the potential energy source), indicating that the $Ly{\alpha}$ photons are originated from the region near the peak of $Ly{\alpha}$ intensity.

  • PDF

지방조직 유래 줄기세포의 조골세포로의 분화에 대한 실험적 연구 (A STUDY ON THE OSTEOGENIC DIFFERENTIATION OF ADIPOSE-DERIVED ADULT STEM CELL)

  • 이의석;장현석;권종진;임재석
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제30권2호
    • /
    • pp.133-141
    • /
    • 2008
  • Stem cells have self-renewal capacity, long-term viability, and multiline age potential. Adult bone marrow contains mesenchymal stem cells. Bone marrow-derived mesenchymal stem cells (BMSCs) are progenitors of skeletal tissue components and can differentiate into adipocytes, chondrocytes, osteoblasts, and myoblasts in vitro and undergo differentiation in vivo. However, the clinical use of BMSCs has presented problems, including pain, morbidity, and low cell number upon harvest. Recent studies have identified a putative stem cell population within the adipose tissue. Human adipose tissue contains pluripotent stem cells simillar to bone marrow-derived stem cells that can differentiate toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages. Human adipose tissue-derived stem cells (ATSCs) could be proposed as an alternative source of adult bone marrow stem cells, and could be obtained in large quantities, under local anesthesia, with minimal discomfort. Human adipose tissue obtained by liposuction was processed to obtain ATSCs. In this study, we compared the osteogenic differentiation of ATSCs in a specific osteogenic induction medium with that in a non-osteogenic medium. ATSCs were incubated in an osteogenic medium for 28 days to induce osteogenesis respectively. Osteogenic differentiation was assessed by von Kossa and alkaline phosphatase staining. Expression of osteocyte specific bone sialoprotein, osteocalcin, collagen type I and alkaline phosphatase, bone morphogenic protein 2, bone morphogenic protein 6 was confirmed by RT-PCR. ATSCs incubated in the osteogenic medium were stained positively for von Kossa and alkaline phosphatase staining. Expression of osteocyte specific genes was also detected. Since this cell population can be easily identified through fluorescence microscopy, it may be an ideal source of ATSCs for further experiments on stem cell biology and tissue engineering. The present results show that ADSCs have an ability to differentiate into osteoblasts. In the present study, we extend this approach to characterize adipose tissue-derived stem cells.

Modulation of Human Cardiac Progenitors via Hypoxia-ERK Circuit Improves their Functional Bioactivities

  • Jung, Seok Yun;Choi, Sung Hyun;Yoo, So Young;Baek, Sang Hong;Kwon, Sang Mo
    • Biomolecules & Therapeutics
    • /
    • 제21권3호
    • /
    • pp.196-203
    • /
    • 2013
  • Recent accumulating studies have reported that hypoxic preconditioning during ex vivo expansion enhanced the self-renewal or differentiation of various stem cells and provide an important strategy for the adequate modulation of oxygen in culture conditions, which might increase the functional bioactivity of these cells for cardiac regeneration. In this study, we proposed a novel priming protocol to increase the functional bioactivity of cardiac progenitor cells (CPCs) for the treatment of cardiac regeneration. Firstly, patient-derived c-$kit^+$ CPCs isolated from the atrium of human hearts by enzymatic digestion and secondly, pivotal target molecules identified their differentiation into specific cell lineages. We observed that hCPCs, in response to hypoxia, strongly activated ERK phosphorylation in ex vivo culture conditioning. Interestingly, pre-treatment with an ERK inhibitor, U0126, significantly enhanced cellular proliferation and tubular formation capacities of CPCs. Furthermore, we observed that hCPCs efficiently maintained the expression of the c-kit, a typical stem cell marker of CPCs, under both hypoxic conditioning and ERK inhibition. We also show that hCPCs, after preconditioning of both hypoxic and ERK inhibition, are capable of differentiating into smooth muscle cells (SMCs) and cardiomyocytes (CMs), but not endothelial cells (ECs), as demonstrated by the strong expression of ${\alpha}$-SMA, Nkx2.5, and cTnT, respectively. From our results, we conclude that the functional bioactivity of patient-derived hCPCs and their ability to differentiate into SMCs and CMs can be efficiently increased under specifically defined culture conditions such as short-term hypoxic preconditioning and ERK inhibition.

Expression of Sara2 Human Gene in Erythroid Progenitors

  • Jardim, Denis Leonardo Fontes;Cunha, Anderson Ferreira Da;Duarte, Adriana Da Silva Santos;Santos, Camila Oresco Dos;Saad, Sara Terezinha Olalla;Costa, Fernando Ferreira
    • BMB Reports
    • /
    • 제38권3호
    • /
    • pp.328-333
    • /
    • 2005
  • A human homologue of Sar1, named Sara2, was shown to be preferentially expressed during erythropoiesis in a culture stimulated by EPO. Previous studies, in yeast, have shown that secretion-associated and Ras-related protein (Sar1p) plays an essential role in protein transport from the endoplasmic reticulum to the Golgi apparatus. Here, we report the molecular analysis of Sara2 in erythroid cell culture. A 1250 bp long cDNA, encoding a 198 amino-acid protein very similar to Sar1 proteins from other organisms, was obtained. Furthermore, we also report a functional study of Sara2 with Real-time quantitative PCR analysis, demonstrating that expression of Sara2 mRNA increases during the initial stages of erythroid differentiation with EPO and that a two-fold increase in expression occurs following the addition of hydroxyurea (HU). In K562 cells, Sara2 mRNA was observed to have a constant expression and the addition of HU also up-regulated the expression in these cells. Our results suggest that Sara2 is an important gene in processes involving proliferation and differentiation and could be valuable for understanding the vesicular transport system during erythropoiesis.

CONSTRAINING SUPERNOVA PROGENITORS: AN INTEGRAL FIELD SPECTROSCOPIC SURVEY OF THE EXPLOSION SITES

  • KUNCARAYAKTI, H.;ALDERING, G.;ANDERSON, J.P.;ARIMOTO, N.;DOI, M.;GALBANY, L.;HAMUY, M.;HASHIBA, Y.;KRUEHLER, T.;MAEDA, K.;MOROKUMA, T.;USUDA, T.
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.139-143
    • /
    • 2015
  • We describe a survey of nearby core-collapse supernova (SN) explosion sites using integral field spectroscopy (IFS) techniques, which is an extension of the work described in Kuncarayakti et al. (2013). The project aims to constrain SN progenitor properties based on the study of the immediate environment of the SN. The stellar populations present at the SN explosion sites are studied by means of integral field spectroscopy, which enables the acquisition of both spatial and spectral information of the object simultaneously. The spectrum of the SN parent stellar population gives an estimate of its age and metallicity. With this information, the initial mass and metallicity of the once coeval SN progenitor star are derived. While the survey is mostly done in optical, the additional utilization of near-infrared integral field spectroscopy assisted with adaptive optics (AO) enables us to examine the explosion sites in high spatial detail, down to a few parsecs. This work is being carried out using multiple 2-8 m class telescopes equipped with integral field spectrographs in Chile and Hawaii.

망막변성질환에서의 줄기세포 기반치료 (Stem Cell Based Strategies for the Treatment of Degenerative Retinal Diseases)

  • 박정현;구승엽;조명수;이학섭;최영민;문신용;유형곤
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제37권3호
    • /
    • pp.199-206
    • /
    • 2010
  • 망막 질환에서의 줄기세포 치료는 이전까지 치료가 불가능하다고 여겨졌던 환자들에서 시력을 향상시킬 수 있는 가능성 때문에 주목 받고 있다. 본문에서는 망막 전구세포의 분화를 위해 사용되는 태아 줄기세포, 배아줄기세포 및 성체줄기세포 등 다양한 세포 종류와, 내인적, 외인적 인자 및 이식 방법에 대해 논의하였다. 망막색소상피세포뿐만 아니라 시각세포 전구체로 성공적으로 분화시킨 실험적 연구가 보고되고 있다. 줄기세포기반치료는 아직 한계가 있지만 망막 질환 환자에서 시력을 회복하기 위한 보다 근본적인 치료 방법으로 기대되고 있다.

Early-type host galaxies of Type II and Ib supernovae

  • 서혜원;윤성철;정현진;이석영
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.57.2-57.2
    • /
    • 2011
  • Recent studies find that some early-type galaxies host Type II or Ibc supernovae (SNe II, Ibc). This may imply recent star formation activities in these SNe host galaxies, but a massive star origin of the SNe Ib so far observed in early-type galaxies has been questioned because of their intrinsic faintness and unusually strong Ca lines shown in the nebular phase. To address the issue, we investigate the properties of early-type SNe host galaxies using the data with Galaxy Evolution Explorer (GALEX) ultraviolet photometry and the Sloan Digital Sky Survey optical data. Our sample includes eight SNe II and one peculiar SN Ib (SN 2000ds) host galaxies as well as 32 SN Ia host galaxies. The host galaxy of SN 2005cz, another peculiar SN Ib, is also analyzed using the GALEX data and the NASA/IPAC Extragalactic Database optical data. We find that the NUV?optical colors of SN II/Ib host galaxies are systematically bluer than those of SN Ia host galaxies, and some SN II/Ib host galaxies with NUV - r colors markedly bluer than the others exhibit strong radio emission. We perform a stellar population synthesis analysis and find a clear signature of recent star formation activities in most of the SN II/Ib host galaxies. Our results generally support the association of the SNe II/Ib hosted in early-type galaxies with core collapse of massive stars. We briefly discuss implications for the progenitors of the peculiar SNe Ib 2000ds and 2005cz.

  • PDF