Stem Cell Based Strategies for the Treatment of Degenerative Retinal Diseases

망막변성질환에서의 줄기세포 기반치료

  • Park, Jung-Hyun (Department of Ophthalmology, Seoul Paik Hospital, Inje University) ;
  • Ku, Seung-Yup (Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University) ;
  • Cho, Myung-Soo (Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University) ;
  • Lee, Hak-Sup (Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University) ;
  • Choi, Young-Min (Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University) ;
  • Moon, Shin-Yong (Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University) ;
  • Yu, Hyeong-Gon (Department of Ophthalmology, Seoul National University College of Medicine)
  • 박정현 (인제대학교 서울백병원 안과) ;
  • 구승엽 (서울대학교 의학연구원 인구의학연구소) ;
  • 조명수 (서울대학교 의학연구원 인구의학연구소) ;
  • 이학섭 (서울대학교 의학연구원 인구의학연구소) ;
  • 최영민 (서울대학교 의학연구원 인구의학연구소) ;
  • 문신용 (서울대학교 의학연구원 인구의학연구소) ;
  • 유형곤 (서울대학교 의과대학 안과학교실)
  • Received : 2010.05.07
  • Accepted : 2010.08.12
  • Published : 2010.09.30

Abstract

Stem-cell therapy has the potential to improve vision in patients with untreatable retinal disease. Various types of cell source including fetal, embryonic and adult stem cells, intrinsic and extrinsic factors for differentiation into retinal progenitors and transplantation mode were discussed in this review. Experimental approaches have successfully induced photoreceptor precursor cells and retinal pigment epithelium. Stem-cell-based therapy is a promising treatment to restore vision in patients with retinal disease, in spite of the challenges.

망막 질환에서의 줄기세포 치료는 이전까지 치료가 불가능하다고 여겨졌던 환자들에서 시력을 향상시킬 수 있는 가능성 때문에 주목 받고 있다. 본문에서는 망막 전구세포의 분화를 위해 사용되는 태아 줄기세포, 배아줄기세포 및 성체줄기세포 등 다양한 세포 종류와, 내인적, 외인적 인자 및 이식 방법에 대해 논의하였다. 망막색소상피세포뿐만 아니라 시각세포 전구체로 성공적으로 분화시킨 실험적 연구가 보고되고 있다. 줄기세포기반치료는 아직 한계가 있지만 망막 질환 환자에서 시력을 회복하기 위한 보다 근본적인 치료 방법으로 기대되고 있다.

Keywords

References

  1. Resnikoff S, Pascolini D, Etya'ale D, Kocur I, Pararajasegaram R, Pokharel GP, et al. Global data on visual impairment in the year 2002. Bull World Health Organ 2004; 82: 844-51.
  2. Klassen H, Lund RD. Retinal transplants can drive a pupillary reflex in host rat brains. Proc Natl Acad Sci USA 1987; 84: 6958-60. https://doi.org/10.1073/pnas.84.19.6958
  3. Maclaren RE, Taylor JS. Regeneration in the developing optic nerve: correlating observations in the opossum to other mammalian systems. Prog Neurobiol 1997; 53: 381-98. https://doi.org/10.1016/S0301-0082(97)00041-5
  4. MacLaren RE, Taylor JS. Chiasmatic specificity in the regenerating mammalian optic nerve. Exp Neurol 1997; 147: 279-86. https://doi.org/10.1006/exnr.1997.6620
  5. Bradbury EJ, McMahon SB. Spinal cord repair strategies: why do they work? Nat Rev Neurosci 2006; 7: 644-53. https://doi.org/10.1038/nrn1964
  6. Filbin MT. Recapitulate development to promote axonal regeneration: good or bad approach? Philos Trans R Soc Lond B Biol Sci 2006; 361: 1565-74. https://doi.org/10.1098/rstb.2006.1885
  7. Li SY, Yin ZQ, Chen SJ, Chen LF, Liu Y. Rescue from light-induced retinal degeneration by human fetal retinal transplantation in minipigs. Curr Eye Res 2009; 34: 523-35. https://doi.org/10.1080/02713680902936148
  8. Lu B, Malcuit C, Wang S, Girman S, Francis P, Lemieux L, et al. Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells 2009; 27: 2126-35. https://doi.org/10.1002/stem.149
  9. Lund RD, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R, Lu B, et al. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells 2006; 8: 189-99. https://doi.org/10.1089/clo.2006.8.189
  10. Banin E, Obolensky A, Idelson M, Hemo I, Reinhardtz E, Pikarsky E, et al. Retinal incorporation and differentiation of neural precursors derived from human embryonic stem cells. Stem Cells 2006; 24: 246-57. https://doi.org/10.1634/stemcells.2005-0009
  11. Lamba DA, Karl MO, Ware CB, Reh TA. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci USA 2006; 103: 12769-74. https://doi.org/10.1073/pnas.0601990103
  12. Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells 2004; 6: 217-45.
  13. Gong J, Sagiv O, Cai H, Tsang SH, Del Priore LV. Effects of extracellular matrix and neighboring cells on induction of human embryonic stem cells into retinal or retinal pigment epithelial progenitors. Exp Eye Res 2008; 86: 957-65. https://doi.org/10.1016/j.exer.2008.03.014
  14. Sugie Y, Yoshikawa M, Ouji Y, Saito K, Moriya K, Ishizaka S, et al. Photoreceptor cells from mouse ES cells by co-culture with chick embryonic retina. Biochem Biophys Res Commun 2005; 332: 241-7. https://doi.org/10.1016/j.bbrc.2005.04.125
  15. Osakada F, Ikeda H, Mandai M, Wataya T, Watanabe K, Yoshimura N, et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol 2008; 26: 215-24. https://doi.org/10.1038/nbt1384
  16. Takahashi M, Palmer TD, Takahashi J, Gage FH. Widespread integration and survival of adult-derived neural progenitor cells in the developing optic retina. Mol Cell Neurosci 1998; 12: 340-8. https://doi.org/10.1006/mcne.1998.0721
  17. Young MJ, Ray J, Whiteley SJ, Klassen H, Gage FH. Neuronal differentiation and morphological integration of hippocampal progenitor cells transplanted to the retina of immature and mature dystrophic rats. Mol Cell Neurosci 2000; 16: 197-205. https://doi.org/10.1006/mcne.2000.0869
  18. Chacko DM, Rogers JA, Turner JE, Ahmad I. Survival and differentiation of cultured retinal progenitors transplanted in the subretinal space of the rat. Biochem Biophys Res Commun 2000; 268: 842-6. https://doi.org/10.1006/bbrc.2000.2153
  19. Sakaguchi DS, Van Hoffelen SJ, Theusch E, Parker E, Orasky J, Harper MM, et al. Transplantation of neural progenitor cells into the developing retina of the Brazilian opossum: an in vivo system for studying stem/progenitor cell plasticity. Dev Neurosci 2004; 26: 336-45. https://doi.org/10.1159/000082275
  20. MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, et al. Retinal repair by transplantation of photoreceptor precursors. Nature 2006; 444: 203-7. https://doi.org/10.1038/nature05161
  21. Tsonis PA, Fuentes EJ. Focus on molecules: Pax-6, the eye master. Exp Eye Res 2006; 83: 233-4. https://doi.org/10.1016/j.exer.2005.11.019
  22. Ferda Percin E, Ploder LA, Yu JJ, Arici K, Horsford DJ, Rutherford A, et al. Human microphthalmia associated with mutations in the retinal homeobox gene CHX10. Nat Genet 2000; 25: 397-401. https://doi.org/10.1038/78071
  23. Furukawa T, Morrow EM, Cepko CL. Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 1997; 91: 531-41. https://doi.org/10.1016/S0092-8674(00)80439-0
  24. Mears AJ, Kondo M, Swain PK, Takada Y, Bush RA, Saunders TL, et al. Nrl is required for rod photoreceptor development. Nat Genet 2001; 29: 447-52. https://doi.org/10.1038/ng774
  25. Chen J, Rattner A, Nathans J. The rod photoreceptor-specific nuclear receptor Nr2e3 represses transcription of multiple cone-specific genes. J Neurosci 2005; 25: 118-29. https://doi.org/10.1523/JNEUROSCI.3571-04.2005
  26. Haider NB, Jacobson SG, Cideciyan AV, Swiderski R, Streb LM, Searby C, et al. Mutation of a nuclear receptor gene NR2E3, causes enhanced S cone syndrome, a disorder of retinal cell fate. Nat Genet 2000; 24: 127-31. https://doi.org/10.1038/72777
  27. Bradford RL, Wang C, Zack DJ, Adler R. Roles of cellintrinsic and microenvironmental factors in photoreceptor cell differentiation. Dev Biol 2005; 286: 31-45. https://doi.org/10.1016/j.ydbio.2005.07.002
  28. Pellegrini G, De Luca M, Arsenijevic Y. Towards therapeutic application of ocular stem cells. Semin Cell Dev Biol 2007; 18: 805-18. https://doi.org/10.1016/j.semcdb.2007.09.011
  29. Vugler A, Lawrence J, Walsh J, Carr A, Gias C, Semo M, et al. Embryonic stem cells and retinal repair. Mech Dev 2007; 124: 807-29. https://doi.org/10.1016/j.mod.2007.08.002
  30. Ikeda H, Osakada F, Watanabe K, Mizuseki K, Haraguchi T, Miyoshi H, et al. Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc Natl Acad Sci USA 2005; 102: 11331-6. https://doi.org/10.1073/pnas.0500010102
  31. Wang S, Lu B, Wood P, Lund RD. Grafting of ARPE-19 and Schwann cells to the subretinal space in RCS rats. Invest Ophthalmol Vis Sci 2005; 46: 2552-60. https://doi.org/10.1167/iovs.05-0279
  32. Wang HC, Brown J, Alayon H, Stuck BE. Transplantation of quantum dot-labelled bone marrow-derived stem cells into the vitreous of mice with laser-induced retinal injury: survival, integration and differentiation. Vision Res 2010; 50: 665-73. https://doi.org/10.1016/j.visres.2009.09.003
  33. tani A, Dorrell MI, Kinder K, Moreno SK, Nusinowitz S, Banin E, et al. Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. J Clin Invest 2004; 114: 765-74. https://doi.org/10.1172/JCI200421686
  34. Francis PJ, Wang S, Zhang Y, Brown A, Hwang T, McFarland TJ, et al. Subretinal transplantation of forebrain progenitor cells in nonhuman primates: survival and intact retinal function. Invest Ophthalmol Vis Sci 2009; 50: 3425-31. https://doi.org/10.1167/iovs.08-2908
  35. Coles BL, Angenieux B, Inoue T, Del Rio-Tsonis K, Spence JR, McInnes RR, et al. Facile isolation and the characterization of human retinal stem cells. Proc Natl Acad Sci USA 2004; 101: 15772-7. https://doi.org/10.1073/pnas.0401596101