DOI QR코드

DOI QR Code

CONSTRAINING SUPERNOVA PROGENITORS: AN INTEGRAL FIELD SPECTROSCOPIC SURVEY OF THE EXPLOSION SITES

  • KUNCARAYAKTI, H. (Millennium Institute of Astrophysics) ;
  • ALDERING, G. (Physics Division, Lawrence Berkeley National Laboratory) ;
  • ANDERSON, J.P. (European Southern Observatory, Alonso de Cordova) ;
  • ARIMOTO, N. (Subaru Telescope, National Astronomical Observatory of Japan) ;
  • DOI, M. (Institute of Astronomy, Graduate School of Science, The University of Tokyo) ;
  • GALBANY, L. (Millennium Institute of Astrophysics) ;
  • HAMUY, M. (Departamento de Astronomia, Universidad de Chile) ;
  • HASHIBA, Y. (Institute of Astronomy, Graduate School of Science, The University of Tokyo) ;
  • KRUEHLER, T. (European Southern Observatory, Alonso de Cordova) ;
  • MAEDA, K. (Department of Astronomy, Kyoto University) ;
  • MOROKUMA, T. (Institute of Astronomy, Graduate School of Science, The University of Tokyo) ;
  • USUDA, T. (National Astronomical Observatory of Japan)
  • Received : 2014.11.30
  • Accepted : 2015.06.30
  • Published : 2015.09.30

Abstract

We describe a survey of nearby core-collapse supernova (SN) explosion sites using integral field spectroscopy (IFS) techniques, which is an extension of the work described in Kuncarayakti et al. (2013). The project aims to constrain SN progenitor properties based on the study of the immediate environment of the SN. The stellar populations present at the SN explosion sites are studied by means of integral field spectroscopy, which enables the acquisition of both spatial and spectral information of the object simultaneously. The spectrum of the SN parent stellar population gives an estimate of its age and metallicity. With this information, the initial mass and metallicity of the once coeval SN progenitor star are derived. While the survey is mostly done in optical, the additional utilization of near-infrared integral field spectroscopy assisted with adaptive optics (AO) enables us to examine the explosion sites in high spatial detail, down to a few parsecs. This work is being carried out using multiple 2-8 m class telescopes equipped with integral field spectrographs in Chile and Hawaii.

Keywords

References

  1. Aldering, G., Adam, G., & Antilogus, P., et al., 2002, Overview of the Nearby Supernova Factory, Proc. SPIE, 4836, 61
  2. Allington-Smith, J., Murray, G., & Content, R., et al., 2002, Integral Field Spectroscopy with the Gemini Multiobject Spectrograph. I. Design, Construction, and Testing, PASP, 114, 892 https://doi.org/10.1086/341712
  3. Anderson, J. P., Habergham, S. M., James, P. A., & Hamuy, M., 2012, Progenitor Mass Constraints for Core-collapse Supernovae from Correlations with Host Galaxy Star Formation, MNRAS, 424, 1372 https://doi.org/10.1111/j.1365-2966.2012.21324.x
  4. Bacon, R., Accardo, M., A & djali, L., et al., 2010, The MUSE Second-generation VLT Instrument, Proc. SPIE, 7735, 08
  5. Barbon, R., Buond, V., Cappellaro, E., & Turatto, M., 1999, The Asiago Supernova Catalogue - 10 Years After, A&AS, 139, 531 https://doi.org/10.1051/aas:1999404
  6. Bigelow, B. C., Dressler, A. M., Shectman, S. A., & Epps, H. W., 1998, IMACS: the Multiobject Spectrograph and Imager for the Magellan I Telescope, Proc. SPIE, 3355, 225
  7. Bonnet, H., Abuter, R., & Baker, A., et al., 2004, First Light of SINFONI at the VLT, The Messenger, 117, 17
  8. Cao, Y., Kasliwal, M. M., & Arcavi, I., et al., 2013, Discovery, Progenitor and Early Evolution of a Stripped Envelope Supernova iPTF13bvn, ApJL, 775, L7 https://doi.org/10.1088/2041-8205/775/1/L7
  9. Crowther, P. A., 2013, On the Association Between Corecollapse Supernovae and HII Regions, MNRAS, 428, 1927 https://doi.org/10.1093/mnras/sts145
  10. Eisenhauer, F., Abuter, R., & Bickert, K., et al., 2003, SINFONI - Integral Field Spectroscopy at 50 Milli-arcsecond Resolution with the ESO VLT, Proc. SPIE, 4841, 1548
  11. Eldridge, J. J., Fraser, M., Smartt, S. J., Maund, J. R., & Crockett, R. M., 2013, The Death of Massive Stars - II. Observational Constraints on the Progenitors of Type Ibc Supernovae, MNRAS, 436, 774 https://doi.org/10.1093/mnras/stt1612
  12. Galbany, L., Stanishev, V., & Mourao, A. M., et al. 2014, Nearby Supernova Host Galaxies from the CALIFA Survey:I. Sample, Data Analysis, and Correlation to Starforming Regions, arXiv:1409.1623 (A&A accepted)
  13. Groh, J. H., Meynet, G., Georgy, C., & Ekstrom, S., 2013, Fundamental Properties of Core-collapse Supernova and GRB Progenitors: Predicting the Look of Massive Stars Before Death, A&A, 558, A131 https://doi.org/10.1051/0004-6361/201321906
  14. Heger, A., Fryer, C. L., Woosley, S. E., Langer, N., & Hartmann, D. H., 2003, How Massive Single Stars End Their Life, ApJ, 591, 288 https://doi.org/10.1086/375341
  15. Hook, I. M., Jorgensen, I., & Allington-Smith, J. R., et al., 2004, The Gemini-North Multi-Object Spectrograph: Performance in Imaging, Long-Slit, and Multi-Object Spectroscopic Modes, PASP, 116, 425 https://doi.org/10.1086/383624
  16. Kuncarayakti, H., Doi, M., & Aldering, G., et al., 2013a, Integral Field Spectroscopy of Supernova Explosion Sites: Constraining the Mass and Metallicity of the Progenitors. I. Type Ib and Ic Supernovae, AJ, 146, 30 https://doi.org/10.1088/0004-6256/146/2/30
  17. Kuncarayakti, H., Doi, M., & Aldering, G., et al., 2013b, Integral Field Spectroscopy of Supernova Explosion Sites: Constraining the Mass and Metallicity of the Progenitors. II. Type II-P and II-L Supernovae, AJ, 146, 31 https://doi.org/10.1088/0004-6256/146/2/31
  18. Lantz, B., Aldering, G., & Antilogus, P., et al., 2004, SNIFS: a Wideband Integral Field Spectrograph with Microlens Arrays, Proc. SPIE, 5249, 146
  19. Le Fevre, O., Saisse, M., & Mancini, D., et al., 2003, Commissioning and Performances of the VLT-VIMOS Instrument, Proc. SPIE, 4841, 1670
  20. Leitherer, C., Schaerer, D., & Goldader, J. D., et al., 1999, Starburst99: Synthesis Models for Galaxies with Active Star Formation, ApJS, 123, 3 https://doi.org/10.1086/313233
  21. Pettini, M., & Pagel, B. E. J., 2004, [OIII]/[NII] as an Abundance Indicator at High Redshift, MNRAS, 348, L59 https://doi.org/10.1111/j.1365-2966.2004.07591.x
  22. Schmoll, J., Dodsworth, G. N., Content, R., & Allington-Smith, J. R., 2004, Design and Construction of the IMACS-IFU: a 2000-Element Integral Field Unit, Proc. SPIE, 5492, 624
  23. Smartt, S. J., 2009, Progenitors of Core-Collapse Supernovae, ARAA, 47, 63 https://doi.org/10.1146/annurev-astro-082708-101737
  24. Smith, N., Li, W., Filippenko, A. V., & Chornock, R., 2011, Observed Fractions of Core-collapse Supernova Yypes and Initial Masses of Their Single and Binary Progenitor Stars, MNRAS, 412, 1522 https://doi.org/10.1111/j.1365-2966.2011.17229.x
  25. Yoon, S.-C., Grafener, G., Vink, J. S., Kozyreva, A., & Izzard, R. G., 2012, On the Nature and Detectability of Type Ib/c Supernova Progenitors, A&A, 544, L11 https://doi.org/10.1051/0004-6361/201219790

Cited by

  1. Evolving into a remnant: optical observations of SN 1978K at three decades vol.458, pp.2, 2016, https://doi.org/10.1093/mnras/stw430