• Title/Summary/Keyword: Profile accuracy

Search Result 574, Processing Time 0.028 seconds

cmicroRNA prediction using Bayesian network with biologically relevant feature set (생물학적으로 의미 있는 특질에 기반한 베이지안 네트웍을 이용한 microRNA의 예측)

  • Nam, Jin-Wu;Park, Jong-Sun;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10a
    • /
    • pp.53-58
    • /
    • 2006
  • MicroRNA (miRNA)는 약 22 nt의 작은 RNA 조각으로 이루어져 있으며 stem-loop 구조의 precursor 형태에서 최종적으로 만들어 진다. miRNA는 mRNA의 3‘UTR에 상보적으로 결합하여 유전자의 발현을 억제하거나 mRNA의 분해를 촉진한다. miRNA를 동정하기 위한 실험적인 방법은 조직 특이적인 발현, 적은 발현양 때문에 방법상 한계를 가지고 있다. 이러한 한계는 컴퓨터를 이용한 방법으로 어느 정도 해결될 수 있다. 하지만 miRNA의 서열상의 낮은 보존성은 homology를 기반으로 한 예측을 어렵게 한다. 또한 기계학습 방법인 support vector machine (SVM) 이나 naive bayes가 적용되었지만, 생물학적인 의미를 해석할 수 있는 generative model을 제시해 주지 못했다. 본 연구에서는 우수한 miRNA 예측을 보일 뿐만 아니라 학습된 모델로부터 생물학적인 지식을 얻을 수 있는 Bayesian network을 적용한다. 이를 위해서는 생물학적으로 의미 있는 특질들의 선택이 중요하다. 여기서는 position weighted matrix (PWM)과 Markov chain probability (MCP), Loop 크기, Bulge 수, spectrum, free energy profile 등을 특질로서 선택한 후 Information gain의 특질 선택법을 통해 예측에 기여도가 높은 특질 25개 와 27개를 최종적으로 선택하였다. 이로부터 Bayesian network을 학습한 후 miRNA의 예측 성능을 10 fold cross-validation으로 확인하였다. 그 결과 pre-/mature miRNA 각 각에 대한 예측 accuracy가 99.99% 100.00%를 보여, SVM이나 naive bayes 방법보다 높은 결과를 보였으며, 학습된 Bayesian network으로부터 이전 연구 결과와 일치하는 pre-miRNA 상의 의존관계를 분석할 수 있었다.

  • PDF

Personalized Recommendation System using FP-tree Mining based on RFM (RFM기반 FP-tree 마이닝을 이용한 개인화 추천시스템)

  • Cho, Young-Sung;Ho, Ryu-Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.197-206
    • /
    • 2012
  • A exisiting recommedation system using association rules has the problem, such as delay of processing speed from a cause of frequent scanning a large data, scalability and accuracy as well. In this paper, using a Implicit method which is not used user's profile for rating, we propose the personalized recommendation system which is a new method using the FP-tree mining based on RFM. It is necessary for us to keep the analysis of RFM method and FP-tree mining to be able to reflect attributes of customers and items based on the whole customers' data and purchased data in order to find the items with high purchasability. The proposed makes frequent items and creates association rule by using the FP-tree mining based on RFM without occurrence of candidate set. We can recommend the items with efficiency, are used to generate the recommendable item according to the basic threshold for association rules with support, confidence and lift. To estimate the performance, the proposed system is compared with existing system. As a result, it can be improved and evaluated according to the criteria of logicality through the experiment with dataset, collected in a cosmetic internet shopping mall.

Geometric Evaluation of Patient-Specific 3D Bolus from 3D Printed Mold and Casting Method for Radiation Therapy

  • An, Hyun Joon;Kim, Myeong Soo;Kim, Jiseong;Son, Jaeman;Choi, Chang Heon;Park, Jong Min;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.30 no.1
    • /
    • pp.32-38
    • /
    • 2019
  • Purpose: The objective of this study is to evaluate the geometrical accuracy of a patient-specific bolus based on a three-dimensional (3D) printed mold and casting method. Materials and Methods: Three breast cancer patients undergoing treatment for a superficial region were scanned using computed tomography (CT) and a designed bolus structure through a treatment planning system (TPS). For the fabrication of patient-specific bolus, we cast harmless certified silicone into 3D printed molds. The produced bolus was also imaged using CT under the same conditions as the patient CT to acquire its geometrical shape. We compared the shapes of the produced bolus with the planned bolus structure from the TPS by measuring the average distance between two structures after a surface registration. Results and Conclusions: The result of the average difference in distance was within 1 mm and, as the worst case, the absolute difference did not exceed ${\pm}2mm$. The result of the geometric difference in the cross-section profile of each bolus was approximately 1 mm, which is a similar property of the average difference in distance. This discrepancy was negligible in affecting the dose reduction. The proposed fabrication of patient-specific bolus is useful for radiation therapy in the treatment of superficial regions, particularly those with an irregular shape.

Prediction for Periodontal Disease using Gene Expression Profile Data based on Machine Learning (기계학습 기반 유전자 발현 데이터를 이용한 치주질환 예측)

  • Rhee, Je-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.903-909
    • /
    • 2019
  • Periodontal disease is observed in many adult persons. However we has not clear know the molecular mechanism and how to treat the disease at the molecular levels. Here, we investigated the molecular differences between periodontal disease and normal controls using gene expression data. In particular, we checked whether the periodontal disease and normal tissues would be classified by machine learning algorithms using gene expression data. Moreover, we revealed the differentially expression genes and their function. As a result, we revealed that the periodontal disease and normal control samples were clearly clustered. In addition, by applying several classification algorithms, such as decision trees, random forests, support vector machines, the two samples were classified well with high accuracy, sensitivity and specificity, even though the dataset was imbalanced. Finally, we found that the genes which were related to inflammation and immune response, were usually have distinct patterns between the two classes.

Power Transmission Optimization Based on the Driving Gear of a Cross Drilling/Milling Unit using a Micro Geometry Method (마이크로 지오메트리 방법을 이용한 크로스 드릴링/밀링 유닛 구동기어의 동력전달 최적화에 관한 연구)

  • Kim, Dong-Seon;Zhen, Qin;Beak, Gwon-In;Wu, Yu-Ting;Jeon, Nam-Sul;Lyu, Sung Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.93-99
    • /
    • 2019
  • A cross drilling/milling Unit is an important mechanical part which is widely used in many kinds of machining tool, and various gear trains with good accuracy and reliability features are widely used in power transmission systems. A study on a novel power transmission optimization method for driving gear trains in cross drilling/milling units is presented in this paper. A commercial program for gear system simulation, Romax Designer, was used in this research to intuitively observe the gear meshing and the load distribution conditions on the gear teeth. We obtained the optimal modification value through comparing the results of repeated experiments. For validation, optimized gears were fabricated and then measured with a precision tester.

Telemedicine Software Application

  • UNGUREANU, Ovidiu Costica;POPESCU, Marius-Constantin;CIOBANU, Daniela;UNGUREANU, Elena;SARLA, Calin Gabriel;CIOBANU, Alina-Elena;TODINCA, Paul
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.171-180
    • /
    • 2021
  • Currently, hospitals and medical practices have a large amount of unstructured information, gathered in time at each ward or practice by physicians in a wide range of medical branches. The data requires processing in order to be able to extract relevant information, which can be used to improve the medical system. It is useful for a physician to have access to a patient's entire medical history when he or she is in an emergency situation, as relevant information can be found about the patient's problems such as: allergies to various medications, personal history, or hereditary collateral conditions etc. If the information exists in a structured form, the detection of diseases based on specific symptoms is much easier, faster and with a higher degree of accuracy. Thus, physicians may investigate certain pathological profiles and conduct cohort clinical trials, including comparing the profile of a particular patient with other similar profiles that already have a confirmed diagnosis. Involving information technology in this field will change so the time which the physicians should spend in front of the computer into a much more beneficial one, providing them with the possibility for more interaction with the patient while listening to the patient's needs. The expert system, described in the paper, is an application for medical diagnostic of the most frequently met conditions, based on logical programming and on the theory of probabilities. The system rationale is a search item in the field basic knowledge on the condition. The web application described in the paper is implemented for the ward of pathological anatomy of a hospital in Romania. It aims to ease the healthcare staff's work, to create a connection of communication at one click between the necessary wards and to reduce the time lost with bureaucratic proceedings. The software (made in PHP programming language, by writing directly in the source code) is developed in order to ease the healthcare staff's activity, being created in a simpler and as elegant way as possible.

Development of a Numerical Model Considering Active Tsunami Generation (능동적 지진해일 생성을 고려한 지진해일 수치모형 개발)

  • Jung, Taehwa;Hwang, Sooncheol;Son, Sangyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.4
    • /
    • pp.160-167
    • /
    • 2021
  • Seabed deformation due to the fault failure have both a spatial variation and temporal history. When the faulting process initiates at a certain point beneath seabed, the failure spreads out to neighboring points, resulting in temporal changes of deformation. In particular, such a process induces tsunami waves from the vertical motion of seabed. The uprising speed of seabed affects the formation of initial surface profile, eventually altering the arrival time and runup of tsunamis at the coast. In this work, we developed a numerical model that can simulate the generation and propagation of tsunami waves by considering the horizontal and vertical changes of seabed in an active and dynamic manner. For the verification of the model, it was applied to the 2011 Tohoku-oki earthquake in Japan and the results confirmed that the accuracy was improved compared to the existing passive and static model.

Antibacterial compounds against fish pathogenic bacteria from a combined extract of Angelica gigas and Artemisia iwayomogi and their quantitative analyses

  • Lim, Jae-Woong;Kim, Na Young;Seo, Jung-Soo;Jung, Sung-Hee;Kang, So Young
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.10
    • /
    • pp.319-329
    • /
    • 2021
  • In the search for antibiotic alternatives from safe and effective medicinal plants against fish pathogenic bacteria, we found that a combined extract (CE) of 1:1 (w/w) ratio of Angelica gigas Nakai roots and aerial parts of Artemisia iwayomogi Kitamura showed antibacterial activity against the fish pathogenic bacteria. By antibacterial activity-guided fractionations and isolations, five compounds were isolated and identified as decursinol angelate (1), decursin (2), xanthotoxin (3), demethylsuberosin (4), and 2,4-dihydroxy-6-methoxyacetophenone (5) through spectroscopic analyses, such as nuclear magnetic resonance (NMR) and mass spectrometry (MS). Among the compounds, 1 and 2 showed the highest antibacterial activities against Streptococcus iniae and Vibrio anguillarum, showing minimum inhibitory concentrations (MICs) of 62.5-250 ㎍/mL. Compounds 3, 4, and 5 were also found to be active, with MICs of 31.25-1,000 ㎍/mL for those strains. Furthermore, active compounds, 1 and 2 in CE were simultaneously quantified using high-performance liquid chromatography-tandem MS (HPLC-MS/MS). The average contents of 1 and 2 in CE was 3.68% and 6.14%, respectively. The established method showed reliable linearity (r2 > 0.99), good precision, accuracy, and specificity with intra- and inter-day variations of < 2 % and recoveries of 90.13%-108.57%. These results may be helpful for establishing the chemical profile of CE for its commercialization as an antibiotic alternative in aquaculture.

Numerical Investigation of Ground Effect of Dual Ducted Fan Aircraft During Hovering Flight (제자리 비행하는 이중 덕트 팬 비행체의 지면 효과에 대한 수치적 연구)

  • Lee, Yujin;Oh, Sejong;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.677-690
    • /
    • 2022
  • By using an actuator disk method based flow solver, aerodynamic analysis is carried out for a dual ducted fan aircraft, which is one of the VTOL compound aircrafts, and its associated ground effect is analyzed. The characteristics and accuracy of the solver for ground effect analysis is evaluated through a comparison with the results obtained from the sliding mesh technique. The aerodynamic performance and flow field characteristics with respect to the distance from the ground are analyzed. As the ground distance decreases, the fan thrust increases, but the deterioration of total normal force and hovering flight efficiency is identified owing to the decrease in the vertical force of the duct, fuselage, and wing. By examining the flow field in the bottom of the fuselage, the ground vortices and fountain flow generated by the interaction of the fan wake and ground are identified, and their influence on the aerodynamic performance is analyzed. The strength and characteristics of outwash with respect to the ground distance and azimuth direction are analyzed through comparison/examination of velocity profile. Influence of the ground effect with respect to collective pitch angle is also identified.

Free vibration analysis of FG plates under thermal environment via a simple 4-unknown HSDT

  • Attia, Amina;Berrabah, Amina Tahar;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.899-910
    • /
    • 2021
  • A 4-unknown shear deformation theory is applied to investigate the vibration of functionally graded plates under thermal environment. The plate is fabricated from a functionally graded material mixed of ceramic and metal with continuously varying material properties through the plate thickness. Three types of thermal loadings, uniform, linear and nonlinear temperature rises along the plate thickness are taken into account. The present theory contains four unknown functions as against five or more in other higher order shear deformation theories. The through-the-thickness distributions of transverse shear stresses of the plate are considered to vary parabolically and vanish at upper and lower surfaces. The present model does not require any problem dependent shear correction factor. Analytical solutions for the free vibration analysis are derived based on Fourier series that satisfy the boundary conditions (Navier's method). Benchmark solutions are firstly considered to evaluate the accuracy of the proposed model. Comparisons with the solutions available in literature revealed the good capabilities of the present model for the simulations of vibration responses of FG plates. Some parametric studies are carried out for the frequency analysis by varying the volume fraction profile and the temperature distribution across the plate thickness.