DOI QR코드

DOI QR Code

Free vibration analysis of FG plates under thermal environment via a simple 4-unknown HSDT

  • Attia, Amina (Engineering and Sustainable Development Laboratory, Faculty of Science and Technology, University of Ain Temouchent, Department of civil engineering) ;
  • Berrabah, Amina Tahar (Faculty of Science and Technology, University of Ain Temouchent, Department of civil engineering) ;
  • Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Bourada, Fouad (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Mahmoud, S.R. (GRC Department, Jeddah Community College, King Abdulaziz University)
  • Received : 2021.04.09
  • Accepted : 2021.11.17
  • Published : 2021.12.25

Abstract

A 4-unknown shear deformation theory is applied to investigate the vibration of functionally graded plates under thermal environment. The plate is fabricated from a functionally graded material mixed of ceramic and metal with continuously varying material properties through the plate thickness. Three types of thermal loadings, uniform, linear and nonlinear temperature rises along the plate thickness are taken into account. The present theory contains four unknown functions as against five or more in other higher order shear deformation theories. The through-the-thickness distributions of transverse shear stresses of the plate are considered to vary parabolically and vanish at upper and lower surfaces. The present model does not require any problem dependent shear correction factor. Analytical solutions for the free vibration analysis are derived based on Fourier series that satisfy the boundary conditions (Navier's method). Benchmark solutions are firstly considered to evaluate the accuracy of the proposed model. Comparisons with the solutions available in literature revealed the good capabilities of the present model for the simulations of vibration responses of FG plates. Some parametric studies are carried out for the frequency analysis by varying the volume fraction profile and the temperature distribution across the plate thickness.

Keywords

References

  1. Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.
  2. Akbas, S.D. (2018), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219.
  3. Akbas, S.D. (2019), "Forced vibration analysis of functionally graded sandwich deep beams", Coupled Syst. Mech., 8(3), 259-271. http://dx.doi.org/10.12989/csm.2019.8.3.259.
  4. Alijani, F., Bakhtiari-Nejad, F. and Amabili, M. (2011), "Nonlinear vibrations of FGM rectangular plates in thermal environments", Nonlinear Dynam., 66(3), 251-270. https://doi.org/10.1007/s11071-011-0049-8.
  5. Ansari, R., Ashrafi, M.A., Pourashraf, T. and Sahmani, S. (2015), "Vibration and buckling characteristics of functionally graded nanoplates subjected to thermal loading based on surface elasticity theory", Acta. Astronaut., 109, 42-51. https://doi.org/10.1016/j.actaastro.2014.12.015.
  6. Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
  7. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/SCS.2019.30.6.603.
  8. Becheri, T., Amara, K., Bouazza, M. and Benseddiq, N. (2016), "Buckling of symmetrically laminated plates using nth-order shear deformation theory with curvature effects", Steel Compos.Struct.,21(6), 1347-1368. https://doi.org/10.12989/scs.2016.21.6.1347.
  9. Belmahi, S., Zidour, M., Meradjah, M., Bensattalah, T. and Dihaj, A. (2018), "Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix", Struct. Eng. Mech., 67(5), 517-525. https://doi.org/10.12989/sem.2018.67.5.517.
  10. Bui, T.Q., Do, T.V., Ton, L.H.T., Doan, D.H., Tanaka, S., Pham, D. T., Nguyen-Van, T.A., Yu, T. and Hirose, S. (2016), "On the high temperature mechanical behaviors analysis of heated functionally graded plates using FEM and a new third-order shear deformation plate theory", Compos. Part B-Eng., 92, 218-241. https://doi.org/10.1016/j.compositesb.2016.02.048.
  11. Burlayenko, V.N. and Sadowski, T. (2019), "Free vibrations and static analysis of functionally graded sandwich plates with three-dimensional finite elements", Meccanica, 55(4), 815-832. https://doi.org/10.1007/s11012-019-01001-7.
  12. Burlayenko, V.N., Sadowski, T. and Dimitrova, S. (2019), "Three-dimensional free vibration analysis of thermally loaded FGM sandwich plates", Materials, 12(15), 2377. https://doi.org/10.3390/ma12152377.
  13. Chakraverty, S. and Pradhan, K.K. (2014), "Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions", Aerosp. Sci. Technol., 36, 132-156. https://doi.org/10.1016/j.ast.2014.04.005.
  14. Chen, C.S. (2005), "Nonlinear vibration of a shear deformable functionally graded plate", Compos. Struct., 68(3), 295-302. https://doi.org/10.1016/j.compstruct.2004.03.022.
  15. Chi, S.H. and Chung, Y.L. (2006a), "Mechanical behavior of functionally graded material plates under transverse load-Part I: Analysis", Int. J. Solids Struct., 43(13), 3657-3674. https://doi.org/10.1016/j.ijsolstr.2005.04.011.
  16. Chi, S.H. and Chung, Y.L. (2006b), "Mechanical behavior of functionally graded material plates under transverse load-Part II: Numerical results", Int. J. Solids Struct., 43(13), 3675-3691. https://doi.org/10.1016/j.ijsolstr.2005.04.010.
  17. Daikh A.A. and Zenkour A.M., (2020), "Bending of functionally graded sandwich nanoplates resting on Pasternak foundation under different boundary conditions", J. Appl. Comput. Mech., 6:1245e59. http://dx.doi.org/10.22055/JACM.2020.33136.2166.
  18. Eltaher, M.A. and Mohamed, S.A. (2020), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241.
  19. Fazzolari, F.A. (2015), "Natural frequencies and critical temperatures of functionally graded sandwich plates subjected to uniform and non-uniform temperature distributions", Compos. Struct., 121, 197-210. https://doi.org/10.1016/j.compstruct.2014.10.039.
  20. Gbeminiyi, M.S. (2021), "Perturbation methods to analysis of thermal, fluid flow and dynamics behaviors of engineering systems", Collect Pap. Chaos Theory Appl., 101. https://doi.org/10.5772/intechopen.96059.
  21. Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
  22. Hassan, A.H, Kurgan, N. and Can, N. (2020), "The relations between the various critical temperatures of thin FGM plates", J. Appl. Comput., 6, 1404-1419. https://doi.org/10.22055/jacm.2020.34697.2459
  23. Jari, H., Atri, H.R. and Shojaee, S. (2015), "Nonlinear thermal analysis of functionally graded material plates using a NURBS based isogeometric approach", Compos. Struct., 119, 333-345. https://doi.org/10.1016/j.compstruct.2014.09.006.
  24. Jena, S.K., Chakraverty, S. and Malikan, M. (2020), "Application of shifted Chebyshev polynomial-based Rayleigh-Ritz method and Navier's technique for vibration analysis of a functionally graded porous beam embedded in Kerr foundation", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-020-01018-7.
  25. Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., 7(1), 51-61. http://dx.doi.org/10.12989/anr.2019.7.1.051.
  26. Khazaei, P. and Mohammadimehr, M. (2020), "Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FGSWCNTs based on a nonlocal strain gradient theory", Comput. Concrete, 26(1), 31-52. https://doi.org/10.12989/CAC.2020.26.1.031.
  27. Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Therm. Stresses, 1-19. https://doi.org/10.1080/01495739.2019.1673687.
  28. Kim, Y.W. (2005), "Temperature dependent vibration analysis of functionally graded rectangular plates", J. Sound Vib., 284(3-5), 531-549. https://doi.org/10.1016/j.jsv.2004.06.043.
  29. Li, Q. and Iu, V.P. (2011), "Three-dimensional free vibration of functionally graded material plates on different boundary conditions", Mech. Adv. Mater. Struct., 18, 597-601. https://doi.org/10.1063/1.3452255.
  30. Lyashenko, I.A., Borysiuk, V.N. and Popov, V.L. (2020), "Dynamical model of the asymmetric actuator of directional motion based on power-law graded materials", Facta Univ., Series: Mech. Eng., 18(2), 245-254. https://doi.org/10.22190/FUME200129020L.
  31. Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
  32. Matsunaga, H. (2007), "Free vibration and stability of angle-ply laminated composite and sandwich plates under thermal loading", Compos. Struct., 77(2), 249-262. https://doi.org/10.1016/j.compstruct.2005.07.002.
  33. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/ANR.2019.7.3.181.
  34. Natarajan, S. and Manickam, G. (2012), "Bending and vibration of functionally graded material sandwich plates using an accurate theory", Finite Elem. Anal. Des., 57, 32-42. https://doi.org/10.1016/j.finel.2012.03.006.
  35. Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.
  36. Pandey, S. and Pradyumna, S. (2015), "Free vibration of functionally graded sandwich plates in thermal environment using a layerwise theory", Eur. J. Mech. A-Solid, 51, 55-66. https://doi.org/10.1016/j.euromechsol.2014.12.001.
  37. Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural insulated panels: state-of-the-art", Trends Civil Eng. Architect., 3(1), 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
  38. Parandvar, H. and Farid, M. (2015), "Nonlinear reduced order modeling of functionally graded plates subjected to random load in thermal environment", Compos. Struct., 126, 174-183. https://doi.org/10.1016/j.compstruct.2015.02.006.
  39. Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(sici)1097-0207(20000110/30)47:1/3<663::aid-nme787>3.0.co;2-8.
  40. Selmi, A. (2020), "Dynamic behavior of axially functionally graded simply supported beams", Smart Struct. Syst., 25(6), 669-678. https://doi.org/10.12989/SSS.2020.25.6.669.
  41. Shahsavari, D., Karami, B. and Janghorban, M. (2019a), "On buckling analysis of laminated composite plates using a nonlocal refined four-variable model", Steel Compos. Struct., 32(2), 173-187. http://dx.doi.org/10.12989/scs.2019.32.2.173.
  42. Shahsavari, D., Karami, B., Janghorban, M. (2019b), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. http://dx.doi.org/10.12989/anr.2019.7.5.337.
  43. Shariati, A., Jung, D.W., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Materials, 13(7), 1707. https://doi.org/10.3390/ma13071707.
  44. Sobhy, M. (2016), "An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment", Int. J. Mech. Sci., 110, 62-77. https://doi.org/10.1016/j.ijmecsci.2016.03.003.
  45. Soltani, D., Khorshidi, M.A. and Sedighi, H.M. (2021), "Higher order and scale-dependent micro-inertia effect on the longitudinal dispersion based on the modified couple stress theory", J. Comput. Des. Eng., 8(1), 189-194. https://doi.org/10.1093/jcde/qwaa070.
  46. Suresh, S. and Mortensen, A. (1998), Fundamentals of Functionally Graded Materials, Barnes and Noble Publications, New York.
  47. Swaminathan, K. and Sangeetha, D.M. (2017), "Thermal analysis of FGM plates - A critical review of various modeling techniques and solution methods", Compos. Struct., 160, 43-60. https://doi.org/10.1016/j.compstruct.2016.10.047.
  48. Talha, M. and Singh, B.N. (2010), "Thermo-mechanical induced vibration characteristics of shear deformable functionally graded ceramic-metal plates using finite element method", Proceedings Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 225(1), 50-65. https://doi.org/10.1243/09544062jmes2115.
  49. Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. http://dx.doi.org/10.12989/cac.2020.26.1.053.
  50. Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
  51. Yang, J. and Shen, H.S. (2002), "Vibration characteristics and transient response of shear deformable functionally graded plates in thermal environments", J. Sound. Vib., 255, 579-602. https://doi.org/10.1006/jsvi.2001.4161.
  52. Yang, J. and Shen, H.S. (2002), "Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments", J. Sound Vib., 255(3), 579-602. https://doi.org/10.1006/jsvi.2001.4161.
  53. Yaylaci, E.U., Yaylaci, M., Olmez, H. and Birinci, A. (2020a), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 551-563. https://doi.org/10.12989/cac.2020.25.6.551.
  54. Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.
  55. Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/CAC.2020.26.2.107.
  56. Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
  57. Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2020b), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325.
  58. Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2021b), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. https://doi.org/10.12989/cac.2021.27.3.199.
  59. Yaylaci, M., Eyuboglu, A., Adiyaman, G., Yaylaci, E.U., Oner, E. and Birinci, A. (2021a), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154. https://doi.org/10.1016/j.mechmat.2020.103730.
  60. Yaylaci, M., Terzi, C. and Avcar, M. (2019), "Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane", Struct. Eng. Mech., 72(6), 775-783. https://doi.org/10.12989/sem.2019.72.6.775.
  61. Yazdani, R. and Mohammadimehr, M. (2019), "Double bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and CNTRC face sheets: Wave propagation solution", Comput. Concrete, 24(6), 499-511. https://doi.org/10.12989/CAC.2019.24.6.499.