• Title/Summary/Keyword: Profile accuracy

Search Result 574, Processing Time 0.029 seconds

Evaluation of Beam-Matching Accuracy for 8 MV Photon Beam between the Same Model Linear Accelerator (동일 기종 선형가속기간 8 MV 광자선에 대한 빔 매칭 정확도 평가)

  • Kim, Yon-Lae;Chung, Jin-Beom;Kang, Seong-Hee
    • Journal of radiological science and technology
    • /
    • v.43 no.2
    • /
    • pp.105-114
    • /
    • 2020
  • This study aimed to assess of beam-matching accuracy for an 8 MV beam between the same model linear accelerators(Linac) commissioned over two years. Two models were got the customer acceptance procedure(CAP) criteria. For commissioning data for beam-matched linacs, the percentage depth doses(PDDs), beam profiles, output factors, multi-leaf collimator(MLC) leaf transmission factors, and the dosimetric leaf gap(DLG) were compared. In addition, the accuracy of beam matching was verified at phantom and patient levels. At phantom level, the point doses specified in TG-53 and TG-119 were compared to evaluate the accuracy of beam modelling. At patient level, the dose volume histogram(DVH) parameters and the delivery accuracy are evaluated on volumetric modulated arc therapy(VMAT) plan for 40 patients that included 20 lung and 20 brain cases. Ionization depth curve and dose profiles obtained in CAP showed a good level for beam matching between both Linacs. The variations in commissioning beam data, such as PDDs, beam profiles, output factors, TF, and DLG were all less than 1%. For the treatment plans of brain tumor and lung cancer, the average and maximum differences in evaluated DVH parameters for the planning target volume(PTV) and the organs at risk(OARs) were within 0.30% and 1.30%. Furthermore, all gamma passing rates for both beam-matched Linacs were higher than 98% for the 2%/2 mm criteria and 99% for the 2%/3 mm criteria. The overall variations in the beam data, as well as tests at phantom and patient levels remains all within the tolerance (1% difference) of clinical acceptability between beam-matched Linacs. Thus, we found an excellent dosimetric agreement to 8 MV beam characteristics for the same model Linacs.

RETRIEVAL OF VERTICAL OZONE PROFILE USING SATELLITE SOLAR OCCULTATION METHOD AND TESTS OF ITS SCNSITIVITY (태양 엄폐법에 의한 연직 오존 분포 도출과 민감도 실험)

  • 조희구;윤영준;박재형;이광목;요코다타쓰야
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.119-138
    • /
    • 1998
  • Recently measurements of atmospheric trace gases from satellite are vigorous. So the development of its data processing algorithm is important. In this study, retrievalof vertical ozone profile from the atmospheric transmittance measured by satellite solar occultation method and its sensitivity to temperature and pressure are investigated. The measured transmittance from satellite is assumed to be given by the limb path transmittance simulated using annual averaged Umkehr data for Seoul. The limb path transmittance between wavelengths $9.89{\mu}m$ and $10.2{\mu}m$ is simulated with respect to tangent heights using the ozone data of HALOE SIDS(Hallogen Occultation Experiment Simulated Instrument Data Set) as an initial profile. Other input data such as pressure and temperature are also from HALOE SIDS. Vertical ozone profile is correctly retrieved from the measured transmittance by onion-peeling method from 50km to 11km tangent heights with the vertical resolution of 3km. The bias error of $\pm0.001$ in measured transmittance, the forced error of $\pm3K$ in each layer temperature, and the forced $\pm3%$ error in each layer pressure are assumed for sensitivity tests. These errors are based on the ADEOS/ILAS error limitation. The error in ozone amount ranges from -6.5% to +6.9% due to transmittance error, from -9.5% to +10.5% due to temperature error, and from -5.1% to +5.4% due to pressure error, respectively. The present study suggests that accurate vertical ozone profile can be retrieved from satellite solar occultation method. Accuracy of vertical temperature profile is especially important in the retrieval of vertical ozone profile.

  • PDF

Characteristics of Ball End Milling and Rotary Die-sinking Electrical Discharge Machining for the Cutting Inclination Location (가공경사면 위치에 따른 볼엔드밀가공과 회전식 형조방전가공 특성)

  • 왕덕현;김원일;박성은;박창수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.73-80
    • /
    • 2002
  • In this study, work materials of the ree form surface shape was machined by ball end mill cutter according to the change of cutting location and depth, and the acquired data of cutting force, tool deflection and shape accuracy were analyzed. Cutting force results were obtained with tool dynamometer and tool deflection values were measured by a couple of eddy-current sensors. Shape accuracy was obtained by roundness tester and surface profile measuring machine. As inclination angle was decreased, cutting force was increased. Cutting force showed large value at $105^{\circ}$ and $150^{\circ}$. Tool deflection was less at down milling than at up milling, decreased at 45$^{\circ}$ and 120$^{\circ}$, and shown large tool deflection at $150^{\circ}$. Roughness values were found to be bad in the inside of surface shape tool deflection. Surface accuracy was obtained better precision in down milling than in up milling.

A Study on Ultra Precision Machining for Aspherical Surface of Optical Parts (비구면 광학부품의 초정밀 가공에 관한 연구)

  • Lee, Ju-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.195-201
    • /
    • 2002
  • This paper deals with the precision grinding for aspherical surface of optical parts. A parallel grinding method using the spherical wheel was suggested as a new grinding method. In this method, the wheel axis is positioned at a $\pi$/4 from the Z-axis in the direction of the X-axis. An advantage of this grinding method is that the wheel used in grinding achieves its maximum area, reducing wheel wear and improving the accuracy of the ground mirror surface. In addition, a truing by the CG (curve generating) method was proposed. After truing, the shape of spherical wheel transcribed on the carbon is measured by the Form-Talysurf-120L. The error of the form in the spherical wheel which is the value ${\Delta}x$ and $R{^2}{_y}$ inferred from the measured profile data is compensated by the re-truing. Finally, in the aspherical grinding experiment, the WC of the molding die was examined by the parallel grinding method using the resin bonded diamond wheel with a grain size of #3000. A form accuracy of 0.16${\mu}m$ P-V and a surface roughness of 0.0067${\mu}m$ Ra have been resulted.

A Study on Coaxial-Structure Waveguide High-Order Mode Coupler of Ku-Band satellite tracking system for UAV (무인기용 Ku 대역 위성추적 시스템의 동축구조 도파관 고차모드 커플러에 대한 연구)

  • Lee, Jaemoon;Lim, Jaesung;Ga, Deukhyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.93-99
    • /
    • 2016
  • In this paper, higher order coupler using small size waveguide which applicable for mobile Ku-band multimode monopulse satellite tracking antenna system, has been designed, implemented and tested. Proposed higher order mode coupler adopts a coaxial structure for low profile characteristic considering installation property to mobile satellite terminal system. In addition, by using proposed coupler, extracted tracking error signal pattern has measured and confirmed that required tracking accuracy is satisfied in desired frequency band. In the future, proposed coupler could utilize for multimode monopulse satellite tracking system for high tracking accuracy.

A Simulation Study on the Use of GPS Signals to Infer 3-D Atmospheric Wet Refractivity Structure

  • Chiang, Chen-Ching;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1021-1023
    • /
    • 2003
  • Atmospheric water vapor is a key variable in numerical weather prediction (NWP) models, but it is a crucial factor to limit the accuracy of high-precision GPS positioning technique. For both issues, knowledge about the amount of water vapor is extremely important. In this study, we perform a simulation study to utilize GPS signals through a developed tomographic scheme to retrieve 3D structure of atmospheric wet refractivity, which may be assimilated into NWP models for advancing forecasting or position calculation for improving GPS positioning accuracy. For the purpose of knowing the absolute accuracy of the developed tomographic method, a well-defined temporal and spatial varying state of atmospheric profile is utilized. Under such circumstance, several factors that may influence the retrievals can be easily examined and their impacts may be clearly quantified. They include the values of the positional dilution of precision (PDOP) factors of the GPS signals, ... etc. Based upon the use of a variety spectrum of adjustable factors, many interesting findings are obtained. For example, the more is the number of the observed GPS signals the better becomes the retrievals as expected. Also, the smaller is the PDOP value the better becomes the retrievals.

  • PDF

A Study on the Motion Analysis and Lead-Filter Design for High Speed/Accuracy Movement of Gantry Robot (갠트리 로봇의 고속/고정밀 이송을 위한 모션분석 및 앞섬필터 설계)

  • Kim, Jin-Dae;Cho, Che-Seung;Lee, Hyuk-Jin;Shin, Chan-Bai;Park, Chul-Hu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.31-37
    • /
    • 2011
  • Recently gantry-type robot with 3 axes rectangular coordinates have been studied in the many industrial production equipment and machinery fields. To acquire a good handling and motion performance of this robot, reducing the settling-time and securing the accurate-transfer positioning under high-speed conditions should be required. However when robot is moved in high-speed, the large inertia of robot can lead to serious vibration of robot's head. The time-delayed control characteristics of this robot can also lead to tracking error. In this research, the analysis of the effects of higher order positional-profile is carried out to assure high-speed performance and stiffness specifications. To remove the residual vibration caused by kinematic coupling effect of dual-servo gantry, we develop a dual-servo gantry of rotary type that moving frame of x-axis rotates about z-axis. In order to decrease the tracking error, the 3 type lead-filter through system identification was applied respectively. From the experimental results, it was shown that zero-order series leader-filter has the best performance about tracking error and settling time.

A Study to Determine the Degree of Difficulties with the Excavation of Corestone Weathering Profiles (핵석지반에서의 굴착난이도 평가방법 연구)

  • Lee, Su-Gon;Lee, Byok-Kyu;Kim, Min-Sung
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.89-99
    • /
    • 2007
  • This paper intends to introduce more objective and qualitative rock mass classification method easily applicable to the excavation of gneissic masses showing corestone weathering profiles. It is proven that corestone weathering profile could be divided with reasonable accuracy into digging, ripping and blasting layers using visual and simple mechanical techniques such as Schmidt hammer rebound test on cut slopes, taking into consideration strength and spacial distribution of corestone, workability and work efficiency of excavation. Also, seismic refraction surveys were employed for shallow investigations (down to $20{\sim}30m$ depth) in corestone weathering profile and conducted across the top of vertical exposures where the underlying geology could be directly inspected. Some discrepancies ($3{\sim}4m$ in average and 6 m occasionally) between the actual and assumed materials with respect to seismic velocities were observed. Thus it can be concluded that field geotechnical mapping and field seismic test should be used together in order to get a relatively good accuracy in assessing likely excavation conditions of corestone weather-ing profiles.

Validation of Gamma Knife Perfexion Dose Profile Distribution by a Modified Variable Ellipsoid Modeling Technique

  • Hur, Beong Ik;Jin, Seong Jin;Kim, Gyeong Rip;Kwak, Jong Hyeok;Kim, Young Ha;Lee, Sang Weon;Sung, Soon Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.1
    • /
    • pp.13-22
    • /
    • 2021
  • Objective : High precision and accuracy are expected in gamma knife radiosurgery treatment. Because of the requirement of clinically applying complex radiation and dose gradients together with a rapid radiation decline, a dedicated quality assurance program is required to maintain the radiation dosimetry and geometric accuracy and to reduce all associated risk factors. This study investigates the validity of Leksell Gamma plan (LGP)10.1.1 system of 5th generation Gamma Knife Perfexion as modified variable ellipsoid modeling technique (VEMT) method. Methods : To verify LGP10.1.1 system, we compare the treatment plan program system of the Gamma Knife Perfexion, that is, the LGP, with the calculated value of the proposed modified VEMT program. To verify a modified VEMT method, we compare the distributions of the dose of Gamma Knife Perfexion measured by Gafchromic EBT3 and EBT-XD films. For verification, the center of an 80 mm radius solid water phantom is placed in the center of all sectors positioned at 16 mm, 4 mm and 8 mm; that is, the dose distribution is similar to the method used in the x, y, and z directions by the VEMT. The dose distribution in the axial direction is compared and analyzed based on Full-Width-of-Half-Maximum (FWHM) evaluation. Results : The dose profile distribution was evaluated by FWHM, and it showed an average difference of 0.104 mm for the LGP value and 0.130 mm for the EBT-XD film. Conclusion : The modified VEMT yielded consistent results in the two processes. The use of the modified VEMT as a verification tool can enable the system to stably test and operate the Gamma Knife Perfexion treatment planning system.

Target Length Estimation of Target by Scattering Center Number Estimation Methods (산란점 수 추정방법에 따른 표적의 길이 추정)

  • Lee, Jae-In;Yoo, Jong-Won;Kim, Nammoon;Jung, Kwangyong;Seo, Dong-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.543-551
    • /
    • 2020
  • In this paper, we introduce a method to improve the accuracy of the length estimation of targets using a radar. The HRRP (High Resolution Range Profile) obtained from a received radar signal represents the one-dimensional scattering characteristics of a target, and peaks of the HRRP means the scattering centers that strongly scatter electromagnetic waves. By using the extracted scattering centers, the downrange length of the target, which is the length in the RLOS (Radar Line of Sight), can be estimated, and the real length of the target should be estimated considering the angle between the target and the RLOS. In order to improve the accuracy of the length estimation, parametric estimation methods, which extract scattering centers more exactly than the method using the HRRP, can be used. The parametric estimation method is applied after the number of scattering centers is determined, and is thus greatly affected by the accuracy of the number of scattering centers. In this paper, in order to improve the accuracy of target length estimation, the number of scattering centers is estimated by using AIC (Akaike Information Criteria), MDL (Minimum Descriptive Length), and GLE (Gerschgorin Likelihood Estimators), which are the source number estimation methods based on information theoretic criteria. Using the ESPRIT algorithm as a parameter estimation method, a length estimation simulation was performed for simple target CAD models, and the GLE method represented excellent performance in estimating the number of scattering centers and estimating the target length.