• Title/Summary/Keyword: Product flow

Search Result 1,154, Processing Time 0.031 seconds

Visualization of two-phae flow by using transparent Proton Exchange Membrane Fuel Cell (고분자 전해질 연료전지 가시화 장치를 이용한 이상유동 현상 관찰)

  • Lee, Dong-Ryul;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.374-377
    • /
    • 2009
  • The operating temperature of Proton Exchange Membrane Fuel Cell (PEMFC) usually has to be limited under $100^{\circ}C$ to maintain the proper ionic conductivity. Therefore, the only product from reaction, water, is in the liquid phase. Two-phase flow makes the flow phenomenon in the channel difficult to understand and predict. Water blocking in the PEMFC channel or the pore of Gas Diffusion Layer (GDL), called flooding, is known as the main effect of PEMFC degradation. To analyze two-phase flow, the PEMFC with transparent acrylic plate was used. Two-phase flow patterns were observed by varying the current density. When the PEMFC is mounted horizontally, water in the cathode is mainly transported on the interface between the channel and GDL.

  • PDF

Flow Analysis for Design Modification of Marine Generator Fan (박용 발전기 냉각 팬 설계변경에 따른 유동해석)

  • Kim, Hong-Won;Seol, Sin-Su;Ha, Ji-Soo;Kim, Jin-O
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.840-844
    • /
    • 2003
  • A study for increase of fan flow rate by geometric modification has been conducted to decrease temperature rise of marine generator inner part. Through experiment of a real product, a performance curve for various flow resistances was obtained. Flow analyses for each cases were done by using commercial code-FLUENT and the results were very similar to experimental data (0.7% deviation at normal operating condition). Through flow analysis results for various design geometric modification, a scroll type fan was adopted as a best design geometry with 100Pa more pressure and 22% more flow rate than original fan.

  • PDF

KOMPSAT2 TERMINAL POLAR STATION MASS PRODUCTION TEST

  • Kang, Ji-Hoon;Lee, Chol;Kim, Tae-Hoon;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.375-377
    • /
    • 2008
  • The KOMPSAT2 Terminal Polar Station was recently installed at near North Pole, Tromso, and Toulouse. The K2PS consists of one receiving station and two processing sites. The receiving station has been installed at SvalSat ($N78^{\circ}$, $E15^{\circ}$ ), and the two receiving sites have been installed at KSAT (Kongsberg Satellite Service AS), Tromso, Norway ($N69^{\circ}$ ,$E18^{\circ}$ ) and SISA, Toulouse, France ($N43^{\circ}$ ,$E1^{\circ}$ ). The products ofK2PS system can be classified to two categories: Level 1R product and Level 1G product. The Level 1R product is radiometric corrected product with RPC (Rational Polynomial Coefficients) and the Level 1G product is geometric corrected product with POD (Precise Orbit Data) and PAD (Precise Attitude Data) data based on Level 1R product. To meet a SISA (Spot Image SA)'s requirement, K2PS system has high performance product producing capability. This paper describes overall K2PS systems' production generation flow and the mass production test result of K2PS systems.

  • PDF

An Evaluation of Human-Product Interface Usability (인간-제품 인터페이스의 사용성 평가)

  • 최재하;박영택
    • Proceedings of the ESK Conference
    • /
    • 1997.10a
    • /
    • pp.249-259
    • /
    • 1997
  • As the gap between competing products narrows in terms of performance and quality, the product usability is rapidly becoming a new dimension of product design as the key to offering distinctive value to the customer. Because the user interface is important, not only for the user but also for the efficiency of te whole organiation, system designers require increasingly precise evaluation methods to determine how effective and usable human-product interface is. In this study a new methodology named usability analysis diagram(UAD), for evaluating usability of human-product interface systematically, was developed. UAD is a top-down flow diaagram of a human-product interaction, in ehichfour basic elements - perception, understanding, intellectual decision and action - were classified and then represented by a particular symbol for each. The usability of the product is assessed by the frequency of each symbol in a diagram which represents a sequence of cognitive and physical activities of users during the use of the product, and by the level of difficulty that is classif- ied in three levels in terms of easiness of perception, understanding and action. In order to test validity of the proposed UAD in a real situation, a case study was performed on two different cameras, automatic and manual, and their usability was successfully evaluated and compared.

  • PDF

Effects of gender, shopping motivation, flow experience on shopping behavior (성별, 쇼핑동기, 플로우 경험이 쇼핑행동에 미치는 영향)

  • Choi, Ja-Young;Lee, Kyu-Hye
    • Journal of Digital Convergence
    • /
    • v.10 no.5
    • /
    • pp.53-66
    • /
    • 2012
  • The purpose of the study was to examine the relationships among gender, shopping motivations, flow experience, and purchases using structural equation modeling. Shopping motives were included in the study: self-refreshment, idea seeking, social interaction, product acquisition, and value seeking. Data from 452 male and female respondents were employed to test the model. Empirical findings supported that the proposed model was a good fit to data. Gender played an influential role in shopping motives. All motives except for product acquisition motive significantly influenced flow experience. Flow experiences enhance the purchasing. This study contributed the literature by providing a conceptual foundation of how gender and shopping motivation influence flow experience.

Analysis of Hagen-Poiseuille Flow Using SPH

  • Min, Oakkey;Moon, Wonjoo;You, Sukbeom
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.395-402
    • /
    • 2002
  • This paper shows how to formulate the transient analysis of 2-dimensional Hagen-Poiseuille flow using smoothed particle hydrodynamics (SPH). Treatments of viscosity, particle approximation and boundary conditions are explained. Numerical tests are calculated to examine effects caused by the number of particles, the number of particles per smoothing length, artificial viscosity and time increments for 2-dimensional Hagen-Poiseuille flow. Artificial viscosity for reducing the numerical instability directly affects the velocity of the flow, though effects of the other parameters do not produce as much effect as artificial viscosity. Numerical solutions using SPH show close agreement with the exact ones for the model flow, but SPH parameter must be chosen carefully Numerical solutions indicate that SPH is also an effective method for the analysis of 2-dimensional Hagen-Poiseuille flow.

Radial flow advancement in multi-layered preform for resin transfer molding

  • Shin, K.S.;Song, Y.S.;Youn, J.R.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.217-224
    • /
    • 2006
  • Rapid flow advancement without void formation is essential in the liquid composite molding (LCM) such as resin transfer molding (RTM) and vacuum assisted resin transfer molding (VARTM). A highly permeable layer in multi-layered preform has an important role in improvement of the flow advancement. In this study, a multi-layered preform which consists of three layers is employed. Radial flow experiment is carried out for the multi-layered preform. A new analytic model for advancement of flow front is proposed and effective permeability is defined. The effective permeability for the multi-layered preform is obtained analytically and compared with experimental results. Compaction test is performed to determine the exact fiber volume traction of each layer in the multi-layered preform. Transverse permeability employed in modeling is measured experimentally unlike the previous studies. Accurate prediction of flow advancement is of great use for saving the processing time and enhancing product properties of the final part.

Development of the Flow Control Regulator for Patient Controlled Analgesia (환자통증조절장치(PCA)의 유량제어조절기 개발)

  • Kim, S.Y.;Song, S.J.;Seo, H.B.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.4
    • /
    • pp.39-43
    • /
    • 2010
  • The flow regulators we widely use have some disadvantages. They have a constant flow within each regulator and an inaccuracy with extruding capillary. In this study, we have developed a new type of regulator which was made up of two different capillary tubes overlapped each other. The developed regulator can vary and control the amount of flow. The design parameters of the developed regulator are obtained by using the analytical software. We have proved that the developed regulator can control flow properly through making a trial product and experiment.

  • PDF

Reverse engineering of concentric plug cover by 3D scanning and development of injection mold (3D 스캔을 이용한 콘센트 커버의 역설계 및 금형 개발)

  • Kim, Dong-Wook;Choi, Young-Rock;Shin, Sang-Eun;Kim, Sei-Hwan;Choi, Kyu-Kwang;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.18-22
    • /
    • 2015
  • Mold making and product manufacturing process was made by a die through a number of stages. Thereby, it takes a long period of time from the manufacture of mold until passed the products to consumers. However, it is not possible to meet the diverse desires purchasing of consumer. We made a 3D CAD Model aligned with product scan data using reverse engineering. Utilizing thereafter flow analysis to derive the optimal mold conditions, by applying the condition, and devised a mold fabrication process that is much shorter than the conventional process for fabricating a mold. In this study, the outlet cover to the product, it describes a process, as a result, it was confirmed that the number of steps can be shortened much more than the conventional process.

  • PDF

Optimal design of parallel noncontinuous units with feedstock/product storages (원료및 제품저장조를 포함하는 병렬 비연속 공정의 최적설계)

  • Yi, Gyeong-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.532-541
    • /
    • 1997
  • This article derives an analytic solution to determine the optimal size of multiple noncontinuous process and storage units. The total cost to be minimized consists of the setup cost of noncontinuous processing units and the inventory holding cost of feedstock/product storages. A novel approach, which is called PSW(Periodic Square Wave) model, is applied to represent the material flow among non-continuous units and storages. PSW model presumes that the material flow between unit and storage is periodic square wave shaped. The resulting optimal unit size has similar characteristics with the classical economic lot sizing model such as EOQ(Economic Order Quantity) or EPQ(Economic Production Quantity) model in a sense that the unit size is determined as the balance between setup and inventory holding cost. However, the influence of inventory holding cost of PSW model is different from that of EOQ/EPQ model. EOQ/EPQ model includes only the product inventory holding cost but PSW model includes all inventory holding costs around the non-continuous unit with proportional contribution. PSW model is suitable for analyzing interlinked process-storage system. The optimal lot size of PSW model is smaller than that of EOQ/EPQ model. This is quitea remarkable result considering that the EOQ/EPQ model has been is widely used since last half century.

  • PDF